
Department of Physics, The Chinese University of Hong Kong
PHYS 5130 Principles of Thermal and Statistical Physics (M.Sc. in Physics)

Problem Set 4
Due: 31 October 2020 (Saturday); “T+2” = 2 November 2020 (Monday) (20% discount)
You should submit your work in one PDF file via Blackboard to the appropriate folder no later
than 23:59 on the due date. Late submission before the T+2 due date will be marked with a 20%
discount on the score. Follow Blackboard → Course Contents → Problem Set → Problem Set 4
Submission Folder.
Please work out the steps of the calculations in detail. Discussions among students are highly encouraged,
yet it is expected that we do your homework independently.

This Problem Set is related to the microcanonical ensemble approach in statistical
mechanics. The problems are closely related to the discussions in Ch.VIII of class notes.

Total 120 Points.

4.0 Reading Assignment. This is a guide to our progress. No need to hand in anything. By the
end of Week 7, we are close to finishing the discussion on the Boltzmann’s formula S = k lnW . We
covered the conditions when it is valid, the idea behind replacing a time average by an ensemble
average (and thus the idea of a microcanonical ensemble), and illustrated the ideas with three
standard applications. The heat capacity of solids problem is related to each particle having an
unbounded energy spectrum. The defect formation problem is related to each particle having a
bounded energy spectrum. The classical ideal gas problem illustrates the idea of working in the
6N-dimensional phase space and how the breaking down of the result leads to the necessity of
considering quantum gases. Ch.VIII ends with sections making connections to thermodynamics
and opening new directions for developments. The entropy formula written into the Gibbs form
turned out to be the foundation of information science. Irreversible processes and time arrows
are related to the huge number of accessible microstates associated with a dominating type of
distribution. This leads to the formalism of finding the Most Probable Distribution under some
constraints. This method can readily be applied to obtain the Fermi-Dirac and Bose-Einstein
distributions for non-interacting particles. The zeroth law of thermodynamics emerges when we
put two systems in thermal contact and take the two systems as a composite system. This idea
will be extended to the canonical ensemble formalism. Finally the third law of thermodynamics
is related to the unique ground state.

Go through all sections of Ch.VIII. It gives all the principles of equilibrium statistical mechanics.

4.1 (15 points) Frenkel defects or interstitial defects

The physical picture is that some atoms will leave their equilibrium atomic sites in a solid and
move into places somewhere in between the equilibrium atomic sites in a solid. In contrast, the
Schottky defects discussed in Ch.VIII are atoms that leave the equilibrium sites and move to the
surface sites. Here, you will do a similar calculation but with one additional complication. [For
physicists – this completes the statement of the problem. The question is then work out the
number of defects as a function of temperature, and what signal there will be in the heat capacity.
And you can use whatever methods to get it done.]

As students, I set up the problem for you using only what we have learned so far. Let N be the
number of atoms in the system. Let N ′ be the number of interstitial sites that an atom can move
into. The energy required to create one defect (moves away from equilibrium site and go into one
interstitial site) is ε, which is typically higher than kT at room temperature.
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Do a counting of W (E) for a given energy E of creating n such Frenkel defects. [Hint: The
counting is related to how many ways that n atoms can be taken out from N atoms and placed
them into N ′ sites.] Hence, find the entropy S(E) and derive an expression for 1/T . Turn
our result into an expression giving the number of Frenkel defects n(T ) generated as a function
of temperature T .

[Remark: For an introduction to the physics of point defects, see Kittel, Introduction to Solid
State Physics (8th edition) Ch.20.]

4.2 (40 points) Collection of independent and distinguishable “two-level” particles

This is also related to the defect formation problem discussed in Ch.VIII, but in a more general
situation and in a different context.

Physics Background: We have a collection of identical but distinguishable particles, each has a
magnetic dipole moment that can only take on two components along a direction (thus spin-1/2
particles, don’t worry if this piece of quantum mechanics is not with you). These dipole moments
do not interact with each other and they only respond to an external magnetic field (should
say magnetic induction ~B). Each particle can therefore be in one of two states with energies
εlow = −µB and εup = +µB, where µ is the standard magnetic dipole moment called the Bohr
magneton usually represented by µB (I used µ there to save a symbol). Given B, the lowest energy
of the whole system is −NµB, when all particles are in the εlow energy state, i.e., ordered by the
B-field. There is only one microstate corresponding to E = −NµB. We would expect this to
be the situation at T = 0 K. Your task is to consider other values of E, count W , and how the
thermal energy kT works to randomize what B wants to order.

We will consider the total energy being in the range −NµB ≤ E < 0. [I will ask you why later.]

(a) For a total energy E = −NµB + n(2µB) within the range stated above, count the number
of microstates compatible with the given energy E.

(b) Obtain the entropy S. [Optional (no bonus): It will be educational to sketch S(E).]

(c) Hence, obtain 1/T and turn the answer into an expression for E(T ). Find the heat
capacity C(T ). Sketch the two results as a function of T . What does it mean by high
temperature and low temperature in this problem? Discuss the low temperature and high
temperature behavior of E(T ) and C(T ).

(d) With the answer in part (c), discuss why we don’t consider E > 0. What’s wrong if we
do so?

(e) For magnetic field problems, it is more important to look at the total magnetic dipole moment
M of the system. The convention is tricky and so be careful. When a particle is in lower
energy εlow state, its magnetic dipole moment is aligned with the B-field (this is EM idea)
and so it contributes +µ toM. Similarly, when a particle is in the upper energy εup state, its
magnetic dipole moment is anti-aligned with the B-field and so it contributes −µ toM. For
example, at T = 0 K, M = Nµ. Analyzing what you already did in the problem, translate
your answers (explain how) into an expression that gives M(T ), i.e., the total magnetic
dipole moment of the system as a function of temperature.

(f) Find the high temperature behavior of M.

(g) More formally, the expression of M(T ) in part (e) can be regarded as M(T,B), as B also
appears in the answer. Obtain ∂M/∂B, which is the magnetic susceptibility χ apart from
a constant (probably off by µ0 (the vacuum permeability)). Hence, analyze the high tem-
perature behavior of χ.
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[Remarks: If you carry the parts through, you have done/learned for yourself an important
section in statistical mechanics and solid state physics about paramagnetic materials. The
answer in part (g) is the Curie’s law. For those who like to work more things out, you may
also try the same problem with 3-level particles, e.g. +ε, 0,−ε are the possible states for each
particle. No bonus, of course.]

4.3 (25 points) Microcanonical Ensemble approach for a collection of Distinguishable Clas-
sical Oscillators

[Remarks: For Problems 4.3 and 4.4, I will not break the problems down into smaller parts.
Instead, I will let you work out the problems as much as you like/can. They are closely related
to sections in class notes. It is hoped that this will also build up your maturity in doing physics.]

Introduction: In Application A of Ch.XIII, we did the correct calculation of a collection of iden-
tical but distinguishable oscillators. By correct we meant that you took into account of the
quantized energy spectrum of each oscillator. In Application C, we discussed the classical ideal
gas by doing integrals in the 6N-dimensional phase space. And it works! Here is your turn to
apply the techniques in the classical ideal gas calculation to a collection of distinguishable clas-
sical oscillators, i.e., the quantized nature of the energy levels in an oscillator is ignored in the
calculation.

Consider a collection of 3N distinguishable (1D) oscillators, each with the same angular frequency
ω. The Hamiltonian of each oscillator is

h(p, x) =
p2

2m
+

1

2
mω2x2 .

The total Hamiltonian is given by summing over all the 3N oscillators.

Read Application C in Ch.VIII carefully. Your task is to repeat the calculation for 3N classical
oscillators, find E(T ) and the heat capacity C(T ). [Basically, it is like writing another application
for the class notes.]

You may start with the following expressions for the number of microstates with energies
less than or equal to a given energy E,

W<(E,N) =
1

h3N

∫
dp1

∫
dp2 · · ·

∫
dp3N

∫
dx1

∫
dx2 · · ·

∫
dx3N︸ ︷︷ ︸∑3N

i=1
(
p2
i

2m
+ 1

2
mω2x2

i )≤E

.

There is no 1/N ! here because the oscillators are distinguishable (by their locations). The question
is: Obtain all results and discuss the physics.

Hints: You may want to follow this path. Evaluate W<(E,N) (high-dimensional sphere?); obtain
W(E,N); evaluate the entropy S(E,N); evaluate the temperature; turn the result into E(T,N);
and then obtain the heat capacity C(T ); and compare results with the full quantum calculation
in Application A of Ch.VIII.

4.4 (40 points) Write a new section of notes on putting two subsystems of different particle
numbers into thermal contact

This is similar to Sec. J of Ch.VIII. There we illustrated how the zeroth law of thermodynamics
emerges from our stat mech technique. We used two subsystems with the same particle numbers
N = 4 and N2 = 4 in Sec. J. Here, you will consider two subsystems with N1 6= N2.

Let N1 = 3 and N2 = 5. Initially E1 = 2ε and E2 = 14ε. The set up is exactly that in Sec. J.
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Discuss all the physics when we start from two subsystems not exchanging anything between
each other to putting them together into thermal contact (only energy can be exchanged) and
reaching equilibrium. The physics includes (not limited to): the change in the accessible microstate
numbers after systems are in thermal contact, entropy change, all energy distributions between
the two subsystems when they are in thermal contact and the number of microstates for each
distribution, the dominating distribution, irreversible processes, time of arrow, zero law, etc.
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