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International Statistical Conference in Memory of Prof. S'Y Lee

‘When you identify the problems, you finish half of the project.’

Shi (NCL & ATI, UK)

Modelling function-valued processes



Overview

© Multi-dimensional function-valued processes
o Covariance separability assumption

e Bayesian process regression analysis
o Stationary model
@ Nonstationary GPs

© Numerical results

© Conclusions
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Multi-dimensional function-valued processes

In FPCA, the random process X(t), t € R?, is represented as (Karhunen-Loéve expansion)

X(£) = p(t) + > &ui(e),

=t

where & are uncorrelated random variables and v; are eigenfunctions of the covariance
operator of X, i.e. v; are solutions to the equation

/k(t, tv(t)dt' = \v(t).

The eigenvalue J; is the variance of X in the principal direction v; and the cumulative
fraction of variance explained by the first J directions is given by

J
Zj:]_ Aj

M 3

j=1"Y

CFVE, = where M is large.
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Multi-dimensional function-valued processes

In FPCA, the random process X(t), t € R?, is represented as (Karhunen-Loéve expansion)

X(£) = p(t) + > &ui(e),

=t

where & are uncorrelated random variables and v; are eigenfunctions of the covariance
operator of X, i.e. v; are solutions to the equation

/k(t, tv(t)dt' = \v(t).

The eigenvalue J; is the variance of X in the principal direction v; and the cumulative
fraction of variance explained by the first J directions is given by

J
Zj:]_ Aj

M 3

j=1"Y

CFVE, = where M is large.

When @ = 1, the method is well developed; but it is challenging when Q is large.
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Figure 1: Human fertility rates of 17 countries over age for two different years.
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Covariance function
We need to estimate
Cov(X(s, t), X(s', t')) = k(s,t;s',t'),
Chen et al. (JRSSb 2017) suggest to use tensor product representations:

Marginal FPCA: X(s,t) = p(s, t) + Z Z Xk ®ik (t);(s)

j=1 k=1
Product FPCA:  X(s,t) = (s, t) + > _ > xu(£)5(s)
j=1 k=1
For the Product FPCA, this means
J J
k(s 18, £) = lim 3% Meydu(e)us() bl )(s)
j=1 k=1
= /(1(57 S/)kz(t, tl).
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Separability assumption of covariance functions

The covariance function of the random process X(t), t € %2, is said to be separable when
k(t, it 1) = ka(ty, t1)ko(t2, t2).

Main advantages:
@ it reduces computational costs;
@ it is easier to guarantee that the full covariance function is positive semi-definite.

o Covariance function for each coordinate can be estimated nonparametrically
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Separability assumption of covariance functions

The covariance function of the random process X(t), t € R2, is said to be separable when
k(ti, to; t1, 85) = ki(t1, t1 ) ka(t2, 13).

Main advantages:
@ it reduces computational costs;
@ it is easier to guarantee that the full covariance function is positive semi-definite.
@ Covariance function for each coordinate can be estimated nonparametrically
Disadvantage:

@ no interaction between t; and t; in the covariance structure is allowed.

Here we are not interested in interactions in the mean function:

E(X(t)) =70 + 71(t1) + Y2(t2) + 112(t1, t2)
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Separability assumption of covariance functions

The covariance function of the random process X(t), t € R2, is said to be separable when
k(ti, to; t1, 85) = ki(t1, t1 ) ka(t2, 13).

Main advantages:
@ it reduces computational costs;
@ it is easier to guarantee that the full covariance function is positive semi-definite.
@ Covariance function for each coordinate can be estimated nonparametrically
Disadvantage:

@ no interaction between t; and t; in the covariance structure is allowed.

Here we are not interested in interactions in the mean function:

E(X(t)) =70 + 71(t1) + Y2(t2) + 112(t1, t2)

Covariance separability implies separability of eigenfunctions.
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Process regression model
X(t) = u(t) + f(t) + (), f(t), t e R

o To address the difficulties in the estimation of k(t,t'), we can model the random
process f by a process prior.
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Process regression model

X(t) = u(t) + f(t) + (), f(t), t e R

o To address the difficulties in the estimation of k(t,t'), we can model the random
process f by a process prior.

@ A Gaussian process regression (GPR) model (O'Hagan and Kingman, 1978;
Rasmussen and Williams, 2006; Shi and Choi, 2011) is defined as:

> the prior of f(t) is a GP with zero mean, and
> a covariance function

k() : T? = R, k(t,t') = Cov[f(t), f(t)].
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Process regression model
X(t) = p(t) + f(£) + (1), f(), t€ R

o To address the difficulties in the estimation of k(t,t'), we can model the random
process f by a process prior.

@ A Gaussian process regression (GPR) model (O'Hagan and Kingman, 1978;
Rasmussen and Williams, 2006; Shi and Choi, 2011) is defined as:

> the prior of f(t) is a GP with zero mean, and
> a covariance function

k() : T? = R, k(t,t') = Cov[f(t), f(t)].

> Marginally, for any finite n and t1,...,t, € T, the joint distribution of
’
Xn = (X(tl), .. .,X(t,,)) , if €(t) is normal, is an n-variate Gaussian distribution with

mean vector p, = (u(t1), . ,,u.(t,,))/ and covariance matrix W, whose (i, j)-th entry
is given by [“’"],y = k(ti, t;) + 602, i,j=1,...,n
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Process regression model

X(t) = u(t) + F(t) +€(t), f(t), t € R

o To address the difficulties in the estimation of k(t,t'), we can model the random
process f by a process prior.

@ A Gaussian process regression (GPR) model (O'Hagan and Kingman, 1978;
Rasmussen and Williams, 2006; Shi and Choi, 2011) is defined as:

> the prior of f(t) is a GP with zero mean, and
> a covariance function

k() : T? = R, k(t,t') = Cov[f(t), f(t)].

> Marginally, for any finite n and t1,...,t, € T, the joint distribution of
’
Xn = (X(tl), .. .,X(t,,)) , if €(t) is normal, is an n-variate Gaussian distribution with
’
mean vector p, = (u(t1), . 7,u.(l.‘,,)) and covariance matrix W, whose (i, j)-th entry

is given by [“’"],y = k(ti, t;) + 602, i,j=1,...,n

o If e(t) or X(t) is non-Gaussian, the marginal distribution is much more complicated
(see e.g. Wang and Shi, 2014)
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Parametric isotropic covariance functions

Powered Exponential:

k(t, t") = Vexp{ —wl||t — t'||7}, v>0, w>0, 0<y<2
Rational Quadratic:

k(t, t') = (1 + sawl|t — t’||2)7a, a,w > 0.
Matérn:

, 1 v
K(t,t) = W(\/bjwﬂt - t/H) IC,,(\/2Vw||t— t’H), w>0,

where C, is the modified Bessel function of order v.
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Parametric isotropic covariance functions

Powered Exponential:

k(t, t") = Vexp{ —wl||t — t'||7}, v>0, w>0, 0<y<2
Rational Quadratic:

k(t, t') = (1 + sawl|t — t’||2)7a, a,w > 0.
Matérn:

, 1 v
K(t,t) = W(\/bjwﬂt - t/H) IC,,(\/2Vw||t— t’H), w>0,

where C, is the modified Bessel function of order v.

These kernels only depend on the Euclidean distance d = ||t — t'|[].
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More general norms

e to allow anisotropic covariance functions:
d® = (t — t') diag(ws, ..., wo)(t — t)

Q
\2
:qu(tq—tq), Wi, ...,wg > 0.
q=1

e to allow non-separable covariance functions:

P =(t—t) Z(t-t), where ¥ is positive semi-definite.
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Considering nonstationarity

@ When Q is small, k(-,-) can be modelled nonparametrically (see e.g. Hall, Miiller &
Yao, 2008).

o When Q is large, nonparametric method suffers from the curse of dimensionality.
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Considering nonstationarity

@ When Q is small, k(-,-) can be modelled nonparametrically (see e.g. Hall, Miiller &
Yao, 2008).

o When Q is large, nonparametric method suffers from the curse of dimensionality.

o We may use a parametric approach via a convolution (Higdon et al, 99):

f@):/"mumMMdm
§R2

o Using a Gaussian kernel leads to ( Paciorek and Schervish, 2006; Risser and Calder,
2017)

-1/2
«(var)

>(t) + X(t')

Cov[f(0), F(¢)] = o?x(e) 4z (e 4| =T

where g is a valid correlation function where

Qi = (t _ t’)T<W)l(t _ t’),
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Considering nonstationarity

@ A special case is (composite GP, Ba and Joseph, 2012) that X(t) = o(t)X, so that

—1/2

Cov [£(8), 7(t)] = oo 5 1 222 g (/).
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Considering nonstationarity

@ A special case is (composite GP, Ba and Joseph, 2012) that X(t) = o(t)X, so that

~1/2
o0 16)] = o0yt | FLE| (Vo)

o A general case: how to model X(t) (Konzen, Shi and Wang, 2019)
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Spherical parametrisation of varying matrix X (1)

@ T is a subset of t

@ We propose to use spherical parametrisation (Pinheiro and Bates, 1996) of X(7),
converting the problem to modelling of unconstrained parameters w(7).

@ We will consider the Cholesky decomposition
() = L(r)"L(7),

where L = L(0) is an Q x Q upper triangular matrix (including the main diagonal).

Let L; denote the ith column of L and ¢; denote the spherical coordinates of the first
i elements of L;.
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Spherical parametrisation of varying matrix X (1)

projon x axis = [Li]r = [Li} cos [Li]2 2 =0 [L]: - Ivi

Y

< '[2’1? y

z proj on z axis = [Li]a =[Li}1 sin [Li]2 sin [L]s

==
%

\® z

[ti]1 sin [t

proj on y axis = [Li]z =[ul1 sin [Li]z cos [Li]s
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Spherical parametrisation of varying matrix X (1)

@ In general, we have

[Lil, = [6i]; cos([€i],),
[Lil, = [6i]y sin([£i],) cos([¢il3),

[Li];_, = [€]; sin([¢i],) - - - cos([¢i];),
[Li]; = [4], sin([4i],) - - - sin([4i],)-
@ The spherical parameterisation is unique if

[f,‘]1>0, i=1,...,Q,
(6], €(07), i=2...,Q j=2,...,i
o Interpretation: we can show that ¥; = [Z,-]i and that p1; = cos([4],), I=2,...,Q,

with —1 < p1; < 1. This means that we can interpret the values of L in terms of the
length-scale parameters and directions of dependence of X.
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Nonstationary covaraince with varying matrix — Local empirical Bayesian
estimation

@ We can proceed with an unconstrained estimation by
Wi = |Og([€,‘]1), i = 1,...,Q,

[4); . , ,
WQ+(i—2)(i—1)/2+j—1 :IOg (m ) ! :27"‘707 _/:27"’71'
Hj

@ Model each wi(7) nonparametrically: e.g. by GPR or a set of basis functions
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Nonstationary covaraince with varying matrix — Local empirical Bayesian
estimation

@ We can proceed with an unconstrained estimation by
Wi = |Og([£,‘]1)7 i = 1,...,Q,

[4); . . ,
WQ+(i—2)(i—1)/2+j—1 :IOg (m ) ! :27"‘707 _/:27"’71'
Hj

@ Model each wi(7) nonparametrically: e.g. by GPR or a set of basis functions

@ Then, we estimate the unconstrained hyperparameters (log o2, w (7)) via local
marginal likelihood (or local empirical Bayesian), i.e. based on the marginal

distribution of X, = (X(t1),..., X(ta))".
o Flexible varying structure: e.g. time-varying or spatial-varying or both.

o Challenges: for non-Gaussian data
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Prediction and decomposition of function-valued processes

o For Gaussian data, the posterior distribution p(f|D, o2) is a multivariate Gaussian
distribution with

f=E(fID,02) = K(K + o21) 'x
Var(f|D,02) = 02K(K + o21) ",
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Prediction and decomposition of function-valued processes

o For Gaussian data, the posterior distribution p(f|D, o2) is a multivariate Gaussian
distribution with

f=E(fID,02) = K(K + o21) 'x
Var(f|D,02) = 02K(K + o21) ",

@ Decomposition (fPCA)

X(t) ~ pu(t)+F

= p(t)+ ) &ay(t)

1%

u(e)+ > gar(e)
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GPR model — asymptotic theory

@ Suppose that k(-,) continuous and has a finite trace, then f(t) has a representation

F(e) = > &oi(t) =) &a(t)+ b/%z(t)

j=t j=1

where A1 > X2..., and ¢; is the eigen-function of k(-,-) and & ~ N(0, );).
@ We therefore have RKHS
Hrx = Ho ® Hi,

where Hq is the span of ¢1,- -, ¢s (null space) and #H; is the RKHS for Ki.

@ Let P1 be the orthogonal projection operator in Hx onto H;1, and
fo,x be the nimimiser in Hx of the regularised risk functional:

l n
= G = F(8)) + AP,
i=1
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GPR model — asymptotic theory

Theorem

Let fep(t) = E(f(t)|x1, . . ., xn), then
lim fep(t) = fux(t),
D— oo

o

where A = "—2 and D = diag(A\1/b, ..., As/b). limp_,oc means that each element tends
to infinity.
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GPR model: posterior consistency

Theorem

(Choi, 2005) Let Py denote the joint conditional distribution of {x,}2; given the
covariate assuming that fy is the true response function. Suppose that the values of the
covariate in [0, 1] are fixed, i.e., known ahead of time. Then for every € > 0,

n{fe wS|D} — 0 as. [Po].

The neighbourhood is defined as

We,n = {(f, o) /|f(t) — fo(t)|dQn(x) < e,

i—1‘<e}.
oo
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GPR model: posterior consistency

Theorem

(Choi, 2005) Let Py denote the joint conditional distribution of {x,}2; given the
covariate assuming that fy is the true response function. Suppose that the values of the
covariate in [0, 1] are fixed, i.e., known ahead of time. Then for every € > 0,

n{fe wS|D} =0 as. [Po].

The neighbourhood is defined as

Wen = {(f’ o) : /If(t) — fo()[dQn(x) <€,

i—1’<e}.
oo

Remarks: a good choice of hyper-parameters can improve the efficiency, but has no
influence to the consistency
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GPR model: information consistency

o K-L distance: D[p, q] = f(logp — log q)dP.

Theorem
Upper bound of D[Py(x1, . .., xa|fo), Pep(x1, - . ., Xn)],

1 1
D[Po(x1, - - ., Xa|fo), Pep(x1,- - -, Xn)] < —||f0||f( + > log |l + cK]|,

|||k is the RKHS norm of f, and c is a certain constant.

Pep(x1,...,xn) — a Bayesian predictive distribution of xi, . .

observations.

., Xn using GP prior based on n

@ Thus, the expected KL divergence divided by the sample size converges to zero as

the sample size increases (Seeger, et al. 2008).
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Decomposition of function-valued processes — Asymptotic theory
Theorem

For N > 1 for which Ay > 0, functions {¢i,i =1, ..., N} provide the best finite
dimensional approximations to Z(u) with respect to minimizing criterion

N
argming . c20nE {/ 126 (u) — Zg,-(u)&*lﬁdu} :
u i=1

where gi, ..., gn € L>(U) are orthogonal, and & =< Z(-), gi(-) >= fZ‘:(u)g,-(u)du.

The minimizing value is 3\ . Ai.
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Decomposition of function-valued processes — Asymptotic theory

Theorem

For N > 1 for which Ay > 0, functions {¢i,i =1, ..., N} provide the best finite
dimensional approximations to Z(u) with respect to minimizing criterion

N
argming .20 E {/ [|1Z¢(u) — Zgi(u)ﬁﬂlzdu} )
u i=1

where g1, ...,gn € L*(U) are orthogonal, and & =< Z°(-),&i() >= [ Z°(u)gi(u)du.

The minimizing value is )\ | Ai.

Theorem

Suppose conditions C1 - C3 in Appendix hold, and [i(t) satisfies

sup, |fi(t) — p(t)| = Op[{log(n)/n}?], we have, for 1 < i < N,
l1ks(- ) = ko (-, )| = Op({log(n)/n}*/?),
1A = Xl = Op({log(n)/n}*'?),
16:(-) = i()l| = Op({log(n)/n}*'?),

1€ — &l = Op({log(n)/n}*/?).
TN
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An example using a general covariance structure

In this simulation study, we assume that the random process f(t1, t>) has zero mean and
covariance function given by

20
Cov[f(t, 1), F(H, )] = > eyt + t2)g(H + 1),
j=1
where ¢;(-) are Chebyshev polynomials, a; = j~*/? and t € [-1,1]*.

We have generated 100 curves from X(t) = f(t) +¢, 02 = 0.1%, observed at n; x n, =
20 x 20 = 400 equally spaced points.
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Figure 2:  First four leading eigensurfaces ¢(t1, t2) of the true model (left column) and the

corresponding estimated eigensurfaces <;?)(t1, t2) from the nonstationary GP model (centre) and
Product FPCA model (right).
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Figure 3: Comparison of cumulative FVEs obtained by the true, and Product FPCA, and
nonstationary GP (NSGP) models.
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Application 1: Non-stationary Gaussian Processes applied to ASFR data
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Empirical Comp GP Product FPCA
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Figure 5:  First three eigensurfaces ¢J(s t), j=1,2,3, of the Empirical, Composnte GP, and

Product FPCA covariance functions estimated for ASFR of 17 countries.
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Conclusions

@ By avoiding the covariance separability assumption, we can provide additional
insights into multi-dimensional functional data;

@ Extensions to cases where @ > 2 are straightforward,;

@ We just need one realisation of the random process X to estimate its covariance
structure;

@ Convolved GPs can be used to measure the cross-covariance structure between
functions.
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Conclusions

@ By avoiding the covariance separability assumption, we can provide additional
insights into multi-dimensional functional data;

@ Extensions to cases where @ > 2 are straightforward,;

@ We just need one realisation of the random process X to estimate its covariance
structure;

@ Convolved GPs can be used to measure the cross-covariance structure between
functions.

@ Interesting topics for future research
» Extension to multi-variate function-valued processes, i.e. X(t) € R, t € R®
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Conclusions

@ By avoiding the covariance separability assumption, we can provide additional
insights into multi-dimensional functional data;

@ Extensions to cases where @ > 2 are straightforward,;

@ We just need one realisation of the random process X to estimate its covariance
structure;

@ Convolved GPs can be used to measure the cross-covariance structure between
functions.

@ Interesting topics for future research

» Extension to multi-variate function-valued processes, i.e. X(t) € R, t € R®

> The use of other process priors: e.g. heavy-tailed processes (Shah et al., 2014; Wang
et al., 2017; Cao et al., 2018): need efficient algorithm

> Extension to Non-Gaussian data is challenging.
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Conclusions

@ By avoiding the covariance separability assumption, we can provide additional
insights into multi-dimensional functional data;

Extensions to cases where Q > 2 are straightforward,

We just need one realisation of the random process X to estimate its covariance
structure;

@ Convolved GPs can be used to measure the cross-covariance structure between
functions.
Interesting topics for future research

» Extension to multi-variate function-valued processes, i.e. X(t) € R, t € R®

> The use of other process priors: e.g. heavy-tailed processes (Shah et al., 2014; Wang
et al., 2017; Cao et al., 2018): need efficient algorithm

> Extension to Non-Gaussian data is challenging.

Thanks for listening!
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