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Structural Models of Corporate Bond Pricing with
Maximum Likelihood Estimation

Abstract

Many empirical studies on the structural models of corporate bond pric-
ing use a proxy to measure the market value of a firm’s assets. This leads to
the conclusion that barrier-independent models significantly underestimate
corporate bond yields. Although barrier-dependent modelstend to overesti-
mate the yield on average, they generate a sizable degree of underestimation.
This paper shows that a frequently used proxy for firm asset value is an up-
wardly biased estimator that makes the empirical frameworkwork system-
atically against structural models of corporate bond pricing. When struc-
tural models are examined using the maximum likelihood estimation, we
find substantial improvement in their performance. Moreover, both barrier-
dependent and barrier-independent models tend to underestimate corporate
bond yields on average. Our empirical analysis shows that structural models
are useful for long-term and medium-term corporate bonds, but that im-
provement is needed for short-term bonds. We give suggestions for future
model development.

Keywords: Corporate bond pricing, credit risk, maximum likelihood estimation,
structural models, systematic bias.
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1 Introduction

Structural models of corporate bond pricing originated with the seminal work of
Black and Scholes (1973) and Merton (1974; henceforth the Merton model). By
considering the capital structures of firms, the Merton model views equity as a call
option on corporate assets, and views corporate debt as a default-free debt less a
put option. However, this simple construction is inadequate to describe actual
situations because it excludes the possibility of default before maturity, the effect
of a stochastic interest rate, and the valuation of coupon-bearing bonds.

Extensions and refinements of structural models have been continuously made
since the work of Merton. Black and Cox (1976) modeled the early default feature
by introducing a default barrier. Geske (1977) viewed a corporate coupon bond as
a portfolio of compound options. Longstaff and Schwartz (1995, LS) developed
a simple framework that incorporates default barrier and stochastic interest rate
to price corporate coupon bonds. Leland and Toft (1996, LT) derived the optimal
capital structure to determine corporate bond value. Collin-Dufresne and Gold-
stein (2001, CDG) proposed a floating default barrier approach to model the target
leverage ratio so that the error in pricing short term bonds with the LS model can
be reduced.

Each model claims to be able to theoretically capture certain market phenom-
ena, but it is important to contain empirical evidence with actual data. Jones,
Mason and Rosenfeld (1984, JMR) were the first to empiricallytest the Merton
model. Based on a sample of firms with simple capital structures and bond prices
in the secondary market in 1977-1981, they showed that the predicted prices from
the Merton model were too high, with a 4.52% on average, and that errors were
more severe for non-investment grade bonds. Ogden (1987) conducted a similar
empirical study with newly issued bonds and obtained a similar result. Lyden
and Saraniti (2000) compared the performance of the Merton and LS models, and
found that yield spreads were underestimated with the Merton model and that the
LS model made no significant improvement.

Eom, Helwege and Huang (2004, EHH) recently conducted a comprehensive
empirical study of structural models. They tested five structural models, includ-
ing the Merton, Geske, LT, LS, and CDG models, taking into account the asset
payout and stochastic interest rate. After carefully examining the capital struc-
tures of firms and characteristics of bonds, EHH obtained a sample of bonds from
1986-1997. To implement the structural models, they proxied the market value
of corporate assets by the sum of the market value of equitiesand the book value
of total liabilities, and used different ways to estimate the other model parame-
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ters. Within this setting, both the Merton and Geske models (barrier-independent
models) underestimated yield spreads on average, whereas the LT, LS and CDG
models (barrier-dependent models) tended to overestimateyield spreads on aver-
age, although there were also a sizable number of underestimations. Despite their
empirical results, EHH proposed an extended Merton model for coupon bonds,
and set some criteria for bond selection.

There are many different ways to implement structural credit risk models. The
major concern is the estimation of the value and risk of a firm’s assets, neither
of which are directly observable. Ronn and Verma (1986) proposed a volatility
restriction (VR) method to estimate firm value and volatility by simultaneously
solving a pair of equations that match the observed stock prices and estimated
stock volatility with model outputs. The VR method was adopted by the empir-
ical works of JMR and Ogden (1987). EHH used the proxy for firm value but
estimated the firm asset volatility by matching the estimated stock volatility with
the model output. Therefore, it is a kind of mixed approach. Duan (1994) pointed
out several theoretical problems of the VR method and derived a maximum like-
lihood (ML) approach. For commercial purposes, Moody’s KMVuses the VR
method to generate an initial guess of volatility, and then puts it into an iteration
process to obtain a constant volatility in the stable stage of the process.

The implementation of structural models has gained attention in the literature
recently because it affects the performance and testing of structural models. Eric-
sson and Reneby (2005) showed, by a series of simulations, that the ML approach
obviously outperforms the VR method in terms of both lack of bias and efficiency.
They claimed that, no matter how satisfactory the theoretical feature of a model,
its empirical use may have been limited by the chosen implementation method.
Duan et al. (2004) showed that the iteration process in the KMV approach is ac-
tually an EM algorithm for obtaining the maximum likelihoodestimator, which
means that it is equivalent to the ML approach of Duan (1994).However, to our
knowledge, no empirical study of the structural models of corporate bond pric-
ing has used the ML approach, and no academic work has been devoted to the
comparison of the proxy and ML approaches.

This paper shows that structural models perform much betterif the ML ap-
proach is used to estimate the model parameters, and, more importantly, that the
proxy for firm value has many potential problems. When the proxy is carried for-
ward to valuation, a significant pricing error is associatedwith all of the structural
models of corporate bond pricing. In contrast, the pricing error is reduced signifi-
cantly when the ML estimation is employed in an empirical study on the same set
of market data. As the proxy for firm value essentially replaces the market value
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of debt with the book value of debt, our study is related to thepaper of Sweeny,
Warga and Winters (1997), which points out that empirical studies in which the
market value of debt is replaced by the book value of debt distort the debt-equity
ratio and cost of capital calculations.

Using option properties, we show that the proxy for firm valueis an upwardly
biased estimator. As the default probability decreases with firm value, the over-
stated firm value leads to theunderestimation of corporate bond yields. Although
the underestimation is less severe for barrier-dependent models, the error is still
significant, and the natural question of why some empirical studies have found that
barrier-dependent modelsoverestimate corporate bond yields on average arises.
We discover that the dividend yield as reported by Compustat, which is measured
as the annual dividend divided by the end-of-year stock price, is an upwardly
biased estimator. Consequently, the overstated dividend yields generate unrea-
sonably high bond yields for firms that pay dividends. This effect is particularly
pronounced in barrier-dependent models. Although the biasis limited to firms
that pay dividends, the induced error is significant enough to make the predicted
yields larger than the market yields on average. However, the underestimation of
yields also occurs for firms that pay little or no dividends due to the proxy for firm
value.

Before further strengthening our arguments with empiricaldata, we devise
maximum likelihood (ML) estimations of the firm asset value and the asset value
volatility for each model. For barrier independent models,we view equity as a
call option on the firm, and employ the ML approach of Duan (1994) to estimate
the parameters. For barrier-dependent models, we derive anML estimation by
viewing the market value of equity as a down-and-out call option on corporate
assets. Our simulation verifies that the maximum likelihoodestimators (MLE)
are close to the true values, but that the proxy approach greatly overstates firm
asset values and volatilities. The simulation shows that the proxy approach leads
to an underestimation of corporate bond yields under both the Merton and LS
models, whereas the MLE renders an accurate estimation.

The empirical data support our claims. We base our empiricalstudy on the
construction of EHH, including their criteria for the selection of corporate bonds,
but our study is different in that the firm asset values and volatilities are obtained
through ML estimation, the default barriers are set to the recovery value of debt,
and the definition of stock dividend yield is revised so that it cannot exceed 100%.
We test the extended Merton, LS, and CDG models. Our results show that the ex-
tended Merton model does not consistently underestimate corporate bond yields,
and that the difference between the model and market yields is about -3 basis
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points on average. The LS model also generates realistic prices with an accompa-
nying notable improvement on short-term and long-term bonds over the Merton
model. Interestingly, the CDG model shows no improvement over the LS model,
and performs the worst of the three models.

This paper contributes to the literature by recognizing thehidden bias in the
proxy for firm value in structural models and by giving a bias-reduced empirical
evaluation of the Merton, LS, and CDG models. We find that barrier-dependent
models do not overestimate bond yields on average, but that all structural models
under investigation tend to underestimate corporate bond yields. However, the
LS model is significantly better than the Merton model, whichsuggests that ML
estimation techniques is useful in the implementation of structural models.

The rest of the paper is organized as follows. Section 2 reviews the possible
implementations of structural models, and discusses the strengths and weaknesses
of each approach. Section 3 describes the ML estimation and verifies the estima-
tion quality with a simulation. Section 4 reports our empirical framework and
the results for the extended Merton, LS, and CDG models. Based on the empir-
ical findings, we give suggestions for the future development of corporate bond
pricing modeling. Conclusive remarks are presented in Section 5.

2 Implementation of structural models

A difficulty that arises when implementing structural models is the estimation of
hidden variables, such as the value and risk of a firm’s assets, asset payout ratio
and default barriers. In this section, we first focus on different approaches to the
estimation of the market value and volatility of a firm, and discuss the strengths
and weaknesses of each approach. We then introduce our choice of asset payout
ratios and default barriers with reasons for their selections.

2.1 The value and risk of a firm’s assets

The simplest approach uses a proxy to measure the market value of a firm and
then estimates the volatility through a time series of the proxy firm values. We
call this estimation the pure proxy approach, which is actually the “Method I”
used by JMR. In accounting principles, the market value of a firm’s assets must be
equal to the market value of equities plus the market value ofdebts. As the latter
is not observable in the market, the proxy approach approximates it by using the
book value of debts. Therefore, the proxy firm value, which isthe sum of market
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value of equities and the book value of liabilities, changesover time through the
fluctuation of equity values alone. This means that the firm asset volatility is
estimated as the standard deviation of the returns of the proxy firm values. This
approach does not depend on the particular features of a structural model and is
typically easy to implement. However, the quality of estimation is unclear and
may be detrimental to the performance of structural models.

To respect the features of structural models, Ronn and Varma(1986) proposed
a volatility restriction (VR) method that obtains the firm value and volatility by
solving a system of two equations. Specifically, for the Merton model the two
equations are

S = C(V ; σv) and σe = σv
V

S

∂S

∂V
, (1)

whereV andσv are the value and volatility of a firm,S andσe are the value
and volatility of the equity, andC(V ; σv) is the call option pricing formula. In
general, the first equation matches the observed equity prices with the prices of
the model under investigation. The second equation restricts the estimated equity
volatility to match the volatility that is generated by applying the Ito lemma to the
equity pricing formula used in the first equation. Although the implementation is
slightly more tedious than the pure proxy approach, the speed is very fast given
modern computing power. At each point in time, this method produces a pair
of estimates of firm value and volatility. Although the VR method violates the
constant volatility assumption of most structural models,it is the most popular
way of implementing structural models. Apart from academicresearch, Moody’s
KMV uses this approach in one part of the estimation process.

In between the foregoing two approaches is the mixed proxy approach that is
used in the empirical study of EHH (2004). The market value ofa firm is estimated
as the proxy firm value, whereas a firm’s volatility is calibrated to the second
equation of the VR method. In this way, the estimation procedure is simpler
than that of the VR approach but respects the model features through the second
equation of (1). Similar to the pure proxy approach, the quality of estimation is
not known.

The last estimation method we discuss is the maximum likelihood (ML) esti-
mation proposed by Duan (1994). The idea of this method is to derive the likeli-
hood function for the equity returns based on the assumptions that the firm value
follows a geometric Brownian motion and the equity value is an option on the firm.
By maximizing the likelihood function, parameters, such asthe drift and volatility
of a firm, are obtained. The firm asset value is then extracted out by equating the
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pricing formula to the observed equity price. This approachis theoretically sound
as it is proven to be asymptotically unbiased and allows the confidence interval for
the parameter estimates to be derived. The drawback of the MLapproach is that
it is a tedious and relatively time consuming approach, usually taking some ten
seconds or longer to complete estimation with one sample path. However, most
empirical studies involve the estimation of several thousand firms, and hence sev-
eral thousand paths. One possible solution is to use severalcomputers at once.

Duan (1994) pointed out several theoretical inconsistencies of the VR ap-
proach. Recently, interest in the implementation of structural models has been
rekindled. Duan and Simonato (2002) applied ML estimation to deposit insurance
value and showed that it outperforms the VR method with the Merton model. Eric-
sson and Reneby (2005) used a series of simulations to show that the ML approach
of Duan (1994) clearly outperforms the VR method in parameter estimation for
both barrier-independent and barrier-dependent models. To our knowledge, no
work has been conducted on either the empirical analysis of structural models
of corporate bond pricing with the ML estimation or the comparison of the ML
estimation and the two proxy approaches.

As an empirical analysis with ML estimation is carried out inSection 4, we
concentrate on the bias induced by the proxy firm value for themoment. We
consider the effects of using the proxy firm value in the Merton and LS models,
where the former is representative of barrier-independentmodels and the latter is
representative of barrier-dependent models. We will show that the proxy for firm
value is an upwardly biased estimator. Then, we will comparethe pure and mixed
proxy approaches.

2.1.1 The Merton model

In the work of Merton (1974), there is no intermediate default, and thus the ter-
minal payoff of zero coupon bond holders takes the minimum ofthe face value
of the bond (X) and the market value of assets (VT ). The current bond price
(BM(V,X, T )) is valued as a risk-free bond minus a put option (P (V,X, T )) on
the current market value of assets (V ) with a strike priceX and a maturityT .
Specifically,

BM(V,X, T ) = X ·D(T ) − P (V,X, T ), (2)

whereD(T ) denotes the default-free discount factor with a maturityT . However,
the payoff for equity holders resembles the call option payoff with a strike price

8



X. DenoteS as the market value of equities. We then have

S = C(V,X, T ),

whereC(V,X, T ) is the standard call option pricing formula.
Let Vproxy be the proxy firm value. The definition of the proxy then asserts

that

Vproxy = S +X or, equivalently,S = Vproxy −X.

By a property of standard call options, a call option premiummust be greater than
the intrinsic value, which implies that

C(V,X, T ) = S = Vproxy −X < C(Vproxy, X, T ).

As a call option is an increasing function of the underlying asset price, the forego-
ing inequality implies that the proxy firm value is an upwardly biased estimator.
This overstated asset value causes the bond price of (2) to beoverestimated and
hence the yield spreads to be underestimated, which explains the significant un-
derestimation of corporate bond yields with the Merton model in many empirical
studies.

2.1.2 The LS model

Black and Cox (1976) introduced a failure barrier to triggerthe default before
debt maturity, which means that the market value of equitiesis viewed as a down-
and-out call (DOC) option on the asset, whereas a zero couponcorporate bond is
a portfolio of a long position in a risk-free debt, a long position in a down-and-
in call, and a short position in a put option. However, the valuation of coupon
bearing bonds is very sophisticated and has no analytical tractability.

The LS model is a simple model for coupon bearing bonds based on the work
of Black and Cox (1976). As the LS model does not mention the market value
of equities, we model it as a DOC option. Appendix A shows thatthe proxy
firm value is an upwardly biased estimator if the default barrier is smaller than or
equal to the debt levelX, and that the bias decreases with the value of the barrier.
We consider the default barrier in this range, because it is the usual assumption.
A more detailed discussion of the choice of default barrier is given in the next
subsection.
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Under the LS model, a coupon bearing bond is decomposed into asum of zero
coupon bonds. This leads to the following pricing formula (see Appendix D).

BLS(V,X,H, T ) =
n

∑

i=1

D(ti) ·Xi · [1 − ωQ(V,Xi, H, ti)], (3)

and X1 = X2 = ... = Xn−1 =
Xc

2
, Xn = X(1 +

c

2
),

wheren is the total number of coupon paying dates{t1, t2, · · · , tn} with tn = T ,
andQ is the risk-neutral default probability. As the proxy for firm value is an up-
wardly biased estimator, the default probabilityQ(V,Xi, H, ti) becomes smaller
than its true value fori = 1, 2, · · · , n if the proxy for firm value is used, and thus
the bond yields are underestimated.

2.1.3 The pure proxy approach versus the mixed proxy approach

Both proxy approaches employ the same approximation of the firm value but dif-
fer in the estimation of a firm’s volatility. We have just shown that both proxy
approaches overestimate the firm value and hence underestimate the corporate
bond yields. However, they may suffer from different degrees of underestimation
due to the effect of the volatility estimate.

Consider a sample ofn equally time-spaced observations of equity values
{S1, S2, · · · , Sn} and a fixed book value of debtX over the period of observa-
tion. Both proxy approaches produce the same set of firm values{V̂1, V̂2, · · · , V̂n},
whereV̂j = Sj +X. The pure proxy approach measures the asset volatility as the
sample standard deviation of the asset returns. That is,

σ2
pure∆t

∣

∣

Si

= Var

(

Vi+1 − Vi

Vi

∣

∣

∣

∣

Si

)

= Var

(

Si+1 − Si

Si

Si

Si +X

∣

∣

∣

∣

Si

)

.

It is easy to see that the asset volatility obtained in this way is less than the stock
volatility σe because0 < Si/(Si +X) < 1 for all i = 1, 2, · · · , n. Moreover,

σpure|Si
=

Si

Si +X
× σe|Si

.

For the mixed proxy approach, the volatility of the firm is estimated using the
second equation of (1). By making the asset volatility the subject, we have

σmix|Si
=

Si

Si +X

[

∂S

∂V

]−1

V =Si+X

× σe|Si
=

[

∂S

∂V

]−1

V =Si+X

× σpure|Si
.
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The quantity∂S/∂V , which is the delta of the standard call (down-and-out call)
option for the Merton (LS) model, is always less than 1. This implies that the
asset volatility of the mixed proxy approach is greater thanthat of the pure proxy
approach.

A higher volatility leads to a high default risk of a firm and hence a higher
credit yield spread. Therefore, the corporate bond yield predicted by the pure
proxy approach is systematically less than that of the mixedproxy approach. In
Section 3, we show by simulation that the mixed proxy approach underestimates
corporate bond yield compared to the ML estimation. The underestimation should
therefore be much more significant in the pure proxy approach.

Because of the shortcomings of the proxy firm value and the VR method, this
paper examines the performance of structural models of corporate bond pricing
with the ML estimation. To make the implementation possible, we specify the
default barrier and asset payout ratio in the following way.

2.2 The default barrier

Usually, if not always, the default barrier is assumed to be less than or equal to
the book value of liabilities, which is a reasonable assumption. When the asset-
to-debt ratio is larger than 1, there is no incentive for a firmto declare bankruptcy
or default on a loan, because the firm is still able to pay back loans by selling the
asset to the market. In fact, it is not difficult to observe survival firms with a value
that is much lower than the value of total debts.

However, there is no consensus of the exact position on the default barrier.
Empirical studies that use a prudential barrier setting to the debt level include
the works of Ogden (1987) and EHH. In the industry, Moody’s KMV sets the
default barrier to the default point, which is the short termdebts plus a half of
the long term debts, and is less than the total debt value. Wong and Choi (2005)
empirically documented that default barriers tend to be less than the book value
of total liabilities, and that 20% of the firms in their samplehave a zero default
barrier.

When implementing barrier-dependent models, we must specify a default bar-
rier that is strictly positive but no greater than the book value of liabilities; oth-
erwise, several inconsistencies may be encountered. For instance, a zero default
barrier is inconsistent with our assumption of using a constant recovery rate. In
our empirical study, we allow the default barrier to be the recovery value, which
is the recovery rate time the book value of liabilities. Whenthe firm value hits
the barrier, it is assumed that the firm will declare bankruptcy and bond holders
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will receive the remaining value of the firm. This remaining value is actually
the recovery value paid to bond holders if we assume a frictionless market and a
strict priority rule. As all of the models considered in thispaper are based on the
assumption of no taxes and bankruptcy costs, this default barrier is a consistent
choice. For a fair comparison, we also include the case of setting the barrier to the
debt level as a control experiment.

2.3 The asset payout ratio

The comprehensive paper of EHH is the only empirical study ofcorporate bond
pricing taking into account the asset payout ratio so far. This ratio captures the
payout that the firm makes in form of dividend yield, share repurchase and bond
coupons to equity holders and bond holders. The data of dividend yield and stock
repurchase can be downloaded from Compustat.

All other things being fixed, the default probability increases with the asset
payout ratio. As the firm value should move downward after a payout event, the
probability that the firm will be unable to honor future obligations increases and
thus this payout ratio plays a crucial role in the pricing of corporate bonds.

We use the spirit as EHH, but make several modifications to their approach.
First, we do not directly use the reported dividend yields, but rather use a revised
definition. The reported dividend yield from Compustat is calculated by dividing
the annual dividends by the end-of-year stock price, which is an upwardly biased
estimator. For firms that pay a large amount of dividends, thecorresponding fig-
ures are usually in excess of 100%. For example, the reporteddividend yields for
the USG Corporation in 1988 and the Georgia Gulf Corporationin 1990 are 668%
and 282%, respectively. These figures are misleading because the actual payout
should not be that high; otherwise, an arbitrage profit can bemade by purchasing
the stock to receive dividends, the total value of which is greater than the initial
investment.

An overstated dividend yield leads to an overestimation in asset payout ratio
and hence corporate bond yields. When we take this effect together with the fact
that the underestimation of corporate bond yields that is caused by the proxy firm
value is less severe for barrier-dependent models, we have apotential explanation
for the finding of past empirical studies that barrier-dependent models tend to
overestimate corporate bond yields on average, but with a sizeable number of
underestimations. In particular, underestimation occursfor low-dividend paying
firms and overestimation occurs for firms that pay a large amount of dividends.

Strictly speaking, the reported dividend yield gives an erroneous perception to
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investors, because the equity price should be adjusted downward after a dividend
payment, and the end-of-year stock is actually the price after the dividend. If
this is used as a denominator to compute the dividend yield, then the number
will be overestimated. Thus, we revise the definition to be the annual dividend
over the sum of the end-of-year stock price and the annual dividend. This value
is easy to obtain and is guaranteed to be less than or equal to 100%. Suppose
that the reported dividend yield iŝq. The revised dividend yield then becomes
q = q̂/(1 + q̂).

Second, we recognize that the effects of the asset payout ratio are different
for equity holders and bond holders. In other words, we use two different values
of asset payout ratio in estimation and corporate bond pricing procedures. We
now offer an explanation for this. For stock options, the option holder cannot re-
ceive dividends paid before an option’s maturity, and thus the dividend yield in
the call option pricing formula lowers the option price to account for this effect.
However, the story is rather different for equity holders. When the asset payout
is due to stock dividend, the payout amount is essentially given to equity hold-
ers, who experience no loss. Bond holders, however, suffer from a higher credit
risk. The same concept applies to stock repurchases as the money goes to equity
holders to buy back the stocks, and thus the effective asset payout ratio to equity
holders should exclude the stock dividend and stock repurchase. The last compo-
nent of the asset payout ratio is bond coupons. However, bondcoupons are also
not included in the effective asset payout ratio to equity holders in our estima-
tion process because the book value of liabilities has already taken into account
the coupon payment. Therefore, we set the effective asset payout ratio to equity
holders to zero to avoid a double count of the bond coupon effect.

In the bond pricing procedure, we measure the asset payout ratio δ according
to the revised dividend yieldq and stock repurchases, but exclude bond coupons
(see Section 4.2 for more information). The reason is that coupon values have
been entered into the corporate bond pricing formula: if thecoupon values are
also included in the asset payout ratio, then the effect willbe counted twice. In
fact, the original papers of Merton, LS, and CDG use a zero asset payout ratio. In
the later two papers, the effects of dividends and stock repurchases are abstracted
from the analysis but the coupon effect is added. Therefore,we assume that the
asset payout ratio to debt holders does not contain bond coupons.

In summary, the implementation of structural models with proxies can pro-
vide us with a distorted picture of the performance of the models. For barrier-
independent models, the proxy for firm value is the dominatedbiased factor that
leads to the underestimation of credit yield spreads. For barrier-dependent models,
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the effect of this factor is less severe, but still significant. However, the overstated
asset-payout ratio may generate a bias to dividend paying firms, which results in
the overestimation of credit yield spreads.

3 Maximum Likelihood Estimation

As the proxy for the market value of assets is biased upward, we adopt the maxi-
mum likelihood estimator (MLE) approach in this paper. For barrier-independent
models, we use the approach of Duan (1994), and for barrier-dependent models,
we view equity values as a down-and-out call option on the firmvalue to devise the
corresponding MLE approach. This section provides the detail of the formulation
and verifies the approach by means of a simulation.

3.1 The MLE approach for the Merton model

The parameters are the asset drift (µ) and asset volatility (σ). For the Merton
model, Duan (1994) showed that the likelihood function for the equity return is

L(µ, σ) =
n

∑

i=2

{ln g(vi|vi−1) − ln[Vi ·N(d1)|V =Vi
]}, (4)

whereN(·) is the cumulative distribution function for a standard normal random
variable andVi andvi denote the asset price and the log of the asset price at time
i, respectively. The explicit expressions ofg(·) andd1 are given in Appendix B,
where we also present the detail formulation.

MLEs are parameters that maximize the likelihood function (4), subject to the
constraints that the market values of equities are equal to the call option pricing
formula, that is,

max
µ,σ

L(µ, σ) s.t. S(ti) = C(ti, V (ti), σ), ∀ i = 1, 2, · · · , n.

Then, the firm valuesV (ti) are solved numerically from the call option formula
using the value ofσ.

3.2 The MLE approach for barrier-dependent models

For barrier-dependent models, the market value of equity isviewed as a DOC
option, rather than a standard call option. The pricing formula of a DOC option
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is given in Appendix C. As the asset price should not go below the default barrier
before bankruptcy occurs, the density function of the log-asset-price becomes [see
Rubinstein and Reiner (1991)],

gB(vi|vi−1;µ, σ) = ϕ(vi − vi−1) − e2(η−1)(h−vi−1)ϕ(vi + vi−1 − 2h), (5)

where

h = logH, η =
µ

σ2
+

1

2
,

ϕ(x) =
1

σ
√

2π(ti − ti−1)
exp

{

− [x− (µ− σ2/2) · (ti − ti−1)]
2

2σ2(ti − ti−1)

}

.

In our estimation process, the functiongB(·|·) takes the form of (5) if the
underlying asset value is larger than the barrier, and zero otherwise. Given the
explicit formula of a DOC option, the option delta (∆(V )) is calculated by differ-
entiating the pricing formula with respect toV . Following a similar procedure to
that of the Merton model, we obtain the log-likelihood function as being

LB(µ, σ) =
n

∑

i=2

{ln gB(vi|vi−1) − ln [Vi · ∆(Vi)|V =Vi
)]}. (6)

We then estimate the parameters by solving the following optimisation problem.

max
µ,σ

LB(µ, σ) s.t. S(ti) = DOC(ti, V (ti), σ), ∀ i = 1, 2, · · · , n.

Finally, we obtain the firm valueV (ti) inversely from the DOC pricing formula.

3.3 Survivorship consideration

In our empirical study, the sample is drawn from survival companies, which may
lead to a survivorship bias in the estimations. We recognizethat maximum likeli-
hood estimation with survivorship has been considered by Duan et al. (2003), who
found that the original approach of Duan (1994) leads to an upward bias in the as-
set drift, but that the other parameters are obtained with a high quality. However,
the survivorship bias has no impact on the testing of corporate bond pricing mod-
els. Structural models value corporate bonds in the risk-neutral world in which
asset drift is replaced by the risk-free interest rate. Thus, the biased drift value
plays no role in corporate bond pricing formulas. The inclusion of the drift in the
estimation procedure aims at enhancing the estimation quality of the volatility.
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3.4 Simulation tests

Our simulation verifies the performance of the estimation scheme. In this simu-
lation exercise, we user = 6.5%, µ = 8%, σ = 0.25, and an initial firm value of
1. One-year (260-day) sample paths are generated accordingto the Black-Scholes
dynamics. Consider the debt maturitiesT of 2, 5, 10 and 20 years. The face value
of the debtX takes three possible values, 0.3, 0.5 and 0.7, which represent the
different leverage levels (or creditworthiness) of a company. To test the Merton
model, we compute the market values of corporate equities bythe standard call
option formula. However, we use the DOC option pricing formula to calculate the
market values of equities under the LS model.

Suppose that the extended Merton model introduced by EHH, see Appendix
D, and LS model are correct models for two different economies. This simulation
on the one hand, attempts to show that the proxy for firm value leads to an under-
estimation of corporate bond yields, and on the other hand isused to check the
performance of the MLE. We directly compare the MLE approachwith the mixed
proxy approach, which produces less underestimation in corporate bond yields
than the pure proxy approach. We first simulate equally time-spaced market val-
ues of the firm based on specified parameters, and then generate equity values and
corporate bond prices using both models. These generated data are then regarded
as market observable values. The detailed procedures of theMLE approach and
the proxy approach are summarized as follows.

1. Extended Merton model withK = X andω = 0.

(a) MLE approach. The approach of Duan (1994) is employed to esti-
mate the asset volatility and the market value of assets. By plugging
the estimates back into the extended Merton model of corporate bond
pricing, the predicted credit yield spreads are obtained.

(b) Proxy approach. We estimate the market value of a firm’s asset by the
proxy for firm value. The asset value volatility,σv, is solved from the
equationσe = σv

Vt

St

∂St

∂Vt
, whereσe is the equity volatility, andSt andVt

denote the market value of equity and the proxy asset value attime t,
respectively. These estimates are substituted into the extended Merton
model to estimate credit yield spreads.

2. LS model withH = X andω = 51.31%.

(a) MLE approach. We view the market value of equity as a DOC option
and perform our proposed MLE approach to estimate the asset volatil-
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ity and the market value of the firm. These estimated parameters are
used to derive corporate bond yield using the LS model.

(b) Proxy approach: We use the same procedure as for the extended Mer-
ton model, except that the LS model is used this time.

Finally, we compare the credit yield spreads and bond pricesthat are obtained
from the proxy and MLE approaches for each model.

The simulation results for the Merton and the LS models are respectively given
in Table 1 and Table 2, and the percentage errors in prices, yields and yield spreads
are reported. The percentage error in prices is the model prices minus the market
price divided by the market price, where a positive number indicates an overes-
timation. The percentage errors in yields and yield spreadsare calculated in the
same manner.

3.4.1 Simulation results for the Merton model

Table 1 shows that the average percentage errors in prices and yields are all close
to zero for the MLE approach, whereas using the proxy firm value the average per-
centage errors in prices are significantly positive and those in the yields and yield
spreads are significantly negative. Panel A shows that the errors are more severe
for zero coupon bonds, and Panel B implies that the errors aremore pronounced
for high leveraged firms. The percentage errors in yield spreads, shown in Panel
C, are consistently less than -90% for all maturities. The simulation suggests that
underestimations of bond yields with the Merton model are probably due to the
hidden bias of the proxy for firm value.

We further illustrate our simulation result by graphs. In Figure 1, the circles
represent the percentage errors in yields that are obtainedfrom the MLE, and the
crosses represent those from the proxy approach. Figure 1a contains the result for
all credit quality and Figures 1b-d present the results for high, medium and low
ratings respectively. The crosses are generally beneath the circles for all cases,
which shows that the proxy for firm value leads to the underestimation of corpo-
rate bond yields.

3.4.2 Simulation results for the LS model

Table 2 summarizes the results of the LS model. It can be seen that the MLE
approach definitely outperforms the proxy approach, and that the errors that are

17



induced by the proxy are less significant than those of the Merton model. How-
ever, the errors are not negligible.

Figure 2 consists of four pictures. Figure 2a plots the percentage errors in the
yields against the debt maturities for all bonds. We can see that the error points
of the MLE are located around zero, whereas most of the pointsof the proxy
approach are negative. Figures 2b, 2c and 2d show the percentage errors in yields
for high, medium, and low rating bonds, respectively. We recognize that proxy
always underestimates the yields of high and medium rating bonds. In Figure 2d,
we can see that there are some points with positive percentage errors in the yields
with the proxy approach, and thus the errors that are generated by the proxy are
partially offset by the imposition of a default barrier for low rating bonds.

In summary, our simulation further supports that the proxy of firm value is in-
appropriate and leads to the underestimation of bond yieldswhen all other param-
eters are fixed. This bias occurs in both barrier-dependent and barrier-independent
models.

4 Empirical study

An empirical study is conducted to check whether the performance of structural
bond pricing models is improved when the MLE approach is used, and whether
the empirical results in the past are driven by the proxy for firm value. We also
empirically examine the Merton, LS, and CDG models using theMLE approach.

4.1 Criteria of bond selection

Based on the criteria of EHH, we select bonds with simple capital structures and
sufficient equity data. The bond prices on the last trading day of each December
for the period 1986-1996 were obtained in the Fixed Income Database. We choose
non-callable and non-putable bonds that are issued by industrial and transportation
firms, and exclude bonds with matrix prices and those with maturities of less than
one year. There are nearly 7,000 bonds that meet these criteria.

To have simple capital structures, we consider firms with only one or two
public bonds, and sinkable and subordinated bonds are excluded. We examine
the characteristics of the firms with information that was provided by the Rating
Interactive of Moody’s Investor Services. We regard firms with an organization
type as corporations and exclude those with a non-US domicile. Firms in broad
industries such as finance, real estate finance, public utility, insurance and banking
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are also excluded from our sample. At this stage, our sample consists of 2,033
bonds.

To measure the market value of corporate assets, we restrictourselves to firms
that have issued equity and provide regular financial statements. Therefore, we
downloaded the market values of equities from Datastream and total liabilities
and reported dividend yields from CompuStat for the period 1986 to 1996. By
matching all of the available data and excluding some firms that were acquired,
our sample ultimately contains 807 bonds issued by 171 firms.

The summary statistics of the data are exhibited in Table 3. Panel A shows
that our sample contains bonds with maturities that range from one year to fifty
years, with an average of ten years. This wide range of maturities enables us to
study the maturity effect of different structural bond pricing models. Our sample
covers zero coupon bonds and bonds with high coupon rates, ata maximum of
15%. The range of yield-to-maturity is wide, from 4% to 22.5%. The bonds in the
sample fall within a large credit spectrum. Most bonds belong to the investment
grade according to Moody’s and S&P, and some are junk bonds. These large
discrepancies in ratings allow us to check the performance of the structural models
for different credit qualities. Our sample includes different sizes of firms that carry
at least US$231 million of market capitalisation to a maximum of US$96 billion.
The total liabilities of these firms range from US$114 million to a maximum of
US$150 billion.

Panel B presents the mean of the time to maturity, coupon rates, yield-to-
maturity, Moody’s rating, S&P rating, market capitalizations, and total liabilities.
The mean of the Moody’s and S&P ratings are quite stable, but the values of time
to maturity, coupon rate, and yield-to-maturity vary from 8to 11.5, 7.55 to 9.75,
and 6.4 to 10, respectively.

4.2 Parameters of the models

Firm-specific parameters include the market value of assets(V ), asset volatility
(σ), book value of liabilities (X), asset payout ratio (δ), and default barrier (H).

To make comparisons, we use both the proxy and the MLE approaches to esti-
mate the market value of assets and the asset value volatility. Our proxy approach
always refers to the mixed proxy approach discussed in Section 2. Although not
reported, the pure proxy approach performs very poor. In theMLE framework,
estimation is based on a one-year time series of market values of equities. We use
the approach of Duan (1994) for the Merton model and the likelihood function of
(6) for the barrier-dependent models, which include the LS and CDG models. We
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assume that a zero rebate is paid to equity holders upon default.
To refresh ideas, we recall that, for the proxy approach, themarket value of

corporate assets is measured by the sum of the market value ofequities and the
book value of total liabilities. The asset volatilities areobtained by the leverage
σe = σv

Vt

St

∂St

∂Vt

, whereSt andVt denote the equity value and the proxy firm value at
time t, respectively. Moreover,σv andσe denote the asset volatility and historical
equity volatility respectively. The historical equity volatility is measured over a
window of 150 trading days.

The asset payout ratio,δ, is the equity payout ratio times leverage. The equity
payout ratio is the revised dividend yield for firms with no stock repurchases in
the year. Let̂q be the reported dividend yield andD be the annual dividend. Then,
the asset payout ratio for this case is given by

δ =
D

S +D

S

V
=

q̂

1 + q̂

S

V
= q

S

V
.

Otherwise, the asset payout ratio is calculated as

δ =
D +Dr

S +D +Dr

S

V
,

whereDr is the total value of stock repurchase over a year. However, stock repur-
chase happens very rare compared to the stock dividend. Therefore, the effect of
asset payout ratio is largely driven by dividends.

For the extended Merton model, we follow EHH and specify the default thresh-
oldK as the face value of total liabilities. For the LS model and CDG models, the
(current) default barriersH are set to the recovery rate times the face value of the
total liabilities, which is a consistent choice. As equity holders receive no rebate
upon default, the recovery value that is received by bond holders should be equal
to the value of the whole firm at the time of default. Barrier-dependent models as-
sert that the firm value is at the barrier level upon default, but if bankruptcy costs
are taken into account, the default barrier is expected to behigher. In this paper,
we abstract the bankruptcy costs.

4.2.1 Interest rate parameters

The Merton model assumes a constant interest rate which we measure by the
instantaneous interest rate fitted to the Nelson-Siegel (1987) model. The LS and
CDG models employ stochastic interest rates following the Vasicek (1977) model.
We calibrate the four parameters that are used in the Vasicek(1977) model to the
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yield data of constant maturity treasury bonds, the data of which were obtained
from the Federal Reserve Board’s H15 release.

Specifically, the Nelson-Siegel (1987) model estimates theyield of default-
free bonds,yNS, as

ŷNS = β0 + δ1(β1 + β2)
1 − e−τ/δ1

τ
− β2e

−τ/δ1 ,

whereτ is the time to maturity. To calibrate the parameters, we search for the
optimal values ofβ0, β1, β2, andδ1 such that the sum-of-squared-error between
the model yields and the market yields is minimized.

The Vasicek model is calibrated in the same way as the Nelson-Siegel model.
The LS and CDG models require the correlation coefficient between the asset
value returns and changes in the risk-free rate. As the market values of assets
have been estimated either by MLE or the proxy approach, we directly calculate
the correlation coefficient,ρ, between the asset returns and changes in interest
rate.

4.2.2 Stationary leverage process parameters

The stationary leverage process parameters are required for the CDG model. We
estimate two sets of parameters for both the MLE and the proxyapproaches. By
the asset price process of (D.2), the process of the log-default-barrier is given by
(D.8). By an application of Ito’s lemma, the process of the log-target-leverage-
ratio, lnLt = ln(Vt/Ht)

d lnLt = [µ+ λν̄ + λ(φrt − lnLt)] dt+ σdW1t, (7)

ν̄ = (ν − φθ) − (δ + σ2/2)/λ.

Given the value of the default barrier and the market values of assets, which are
either estimated by the MLE or the proxy approach, the one-year time series of
lnLt are produced. We then search for the optimal values ofλ, ν̄, φ by minimizing
the sum-of-squared-error between the “observed” and predicted values of the log-
target-leverage ratios, where the predicted values are calculated by equation (7).

4.2.3 Bond specific parameters

The coupon rate (c) and maturity (T ) of the bonds are obtained from the Fixed
Income Database, which enables us to derive the remaining coupon-paying days
for each bond.
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For the recovery rate (ω) of a bond, the paper by Altman and Kishore (1996)
shows that the recovery rates for senior secured and senior unsecured debt are
about 55% and 48%, respectively. Keenan, Shtogrin and Sobehart (1999) also
find that the average bond recovery rate is around 51.31% of the face value of a
bond. We follow EHH in taking a recovery rate of 51.31%. We apply this recovery
rate to the extended Merton, LS, and CDG models.

4.3 Empirical results

The empirical results for the Merton, LS, and CDG models are summarized in
Table 4-7, in which the percentage errors in prices, yields,and yield spreads are
provided. The effects of agency ratings and bond maturitiesare reported in Table
6 and Table 7, respectively. We regard bonds with an S&P rating of A or above as
high rating bonds, those with a BBB-rating as medium rating bonds and others as
junk bonds. We regard bonds with a maturity of less than or equal to 5 years as
short-term bonds, of 5-15 years as medium-term bonds, and others as long-term
bonds.

4.3.1 The Merton model

Table 4 shows the performance of the Merton model. The average percentage er-
rors in the prices and the yields are respectively 7.22% and -15.17% for the proxy
approach, and for the MLE approach the errors in the prices and the yields are
2.37% and -1.82%, respectively. The MLE approach thus consistently improves
the performance of the Merton model in predicting prices andyields.

A similar conclusion can be drawn for the yield spreads. In fact, the MLE
approach produces an average prediction error in the yieldsof -3 basis points,
whereas the proxy approach gives an error value of -126 basispoints. This offers
an empirical evidence that the proxy firm value makes the Merton model generate
a sizable of underestimation of yields. One may recognize that the standard de-
viations of our MLE approach are greater than those of the proxy approach. We
stress that a small standard deviation together with a wrongmean value indicates
a serious bias.

Figure 3 plots the errors in the yields against the bond maturities. Figure 3b
shows the performance of the proxy approach, in which most points fall into the
negative region. Figure 3a shows the empirical results of the MLE approach. We
observe that most points are crowded near zero, which provides evidence that the
proxy for firm value leads to the underestimation of bond yields. Moreover, the
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MLE approach offers a better estimation of corporate bonds,with quite a number
of outliers in the set of short-term bonds. Although the Merton model underes-
timates corporate bond yields on average, it does not consistently underestimate
the yields, as Figure 3a shows that there are many points in the positive region.

Using the MLE approach, the Merton model, shown in Figure 3, can seri-
ously overestimate yields for short-term bonds. This is notsurprising, because
the Merton model produces unrealistically high yields for short-term, but not very
short-term, bonds. The Merton model, shown in Panel A of Table 6, tends to un-
derestimate the yields for high and medium ratings and significantly overestimates
yields for low ratings. When we check our database, we find that most junk bonds
have short maturities. Therefore, the result may be driven by the maturity effect,
rather than the effect of ratings. From Panel A of Table 6, we can see that the Mer-
ton model overestimates short-term bond yields, underestimates long-term bond
yields, and performs the best for medium-term bonds.

4.3.2 The LS model

For the LS model, Table 4 shows that the MLE approach again outperforms the
proxy approach, and that the proxy for firm value leads to the underestimation of
bond yields. The average percentage error in the prices for the proxy approach
is 6.19%, which is significantly positive, whereas the average percentage error in
the yield is -9.45%, which is significantly negative. Adopting the MLE approach,
the average percentage errors in the prices and yields are 3.57% and -4.38%, re-
spectively, and are relatively small in magnitude. The proxy approach considered
in this paper does not include the reported dividend yield but uses the revised
version. Therefore, the overestimation in corporate yieldwith barrier-dependent
models in the past empirical studies may be due to the dividend yields reported
by Compustat since the overestimation does not occur in either our proxy or MLE
approaches.

To further examine the effect of the reported dividend yields, we carry out the
empirical analysis again by setting the default barrier to the book value of liabil-
ities to rule out the effect of our choice of default barrier.Table 5 shows that the
proxies for firm value and the default barrier together do notoverestimate bond
yields in general, and therefore the overestimation in yield is the consequence of
using the reported dividend yield. Interestingly, when theMLE approach is used
with barrier setting to the book value of liabilities, the average bond yield is over-
estimated even with the revised dividend yield. However, when we compare Table
5, Panel B of Table 6 and Panel B of Table 7, we can seen that the performance of
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the MLE approach with the barrier set to the recovery value ismuch better than
the performance of the approach with barrier at the total debt level. This suggests
that setting the default barrier to the recovery value is more appropriate.

Figure 4 plots the difference between the model and market yields against
bond maturity. The LS model (Figure 4a) tends to overestimates yields when de-
fault barrier is set to the book value of liabilities, but it tends to underestimate
yields (Figure 4b) when the default barrier is set to the recovery value. This im-
plies that there is a default barrier between the two values such that the average
percentage error in the yields is zero. This is a reasonable observation, as the
bankruptcy costs, which we ignore, should pull up the barrier to higher than the
recovery value. Future research should consider the effectof bankruptcy costs.

Figure 4c presents the results for the proxy approach with the default barrier
set to the recovery value, in which most of the points are located in the negative
region. A comparison to Figure 4b and 4c shows that the underestimation of yields
is less severe with the MLE approach, which suggests that theMLE approach
improves the predictive power of the LS model.

Like the Merton model, there is evidence, as shown in Figure 4b, of both
extreme underestimation of yields and extreme overestimation, but the problem is
much less severe here. Extreme overestimation often appears for the short-term
bonds. Table 7 reveals that the LS model does better on short-and long-term
bonds than the Merton model. The percentage error in the yields of short-term
bonds is -5.88%, the magnitude of which is smaller than that of the Merton model
(6.78%). The improvement is obvious in the case of long-termbonds, as the LS
model generates a percentage error of -1.44% against that ofthe Merton model of
-7.34%.

Table 6 shows that the LS model outperforms the Merton model for both high
and low rating bonds. The percentage errors in the yields of low ratings in the
LS and Merton models are -9.23% and 40.13%, respectively. Although the per-
centage error in high ratings for both models are similar, the LS model is much
less volatile. The standard deviation of the percentage errors in the yields is al-
most half of that of the Merton model. Therefore, the imposition of a default
barrier improves structural models, as it captures the effect of early default. This
improvement is particularly pronounced for both long-termbonds and low rating
bonds. However, the LS model is still inadequate in describing the credit risk
of short-term bonds. To reduce the extreme overestimation of short-term bond
yields, it may be useful to consider a floating barrier model.
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4.3.3 The CDG model

Table 4 contains the overall performance of the CDG model. Weobserve that the
MLE approach and the proxy approach have a similar performance. The aver-
age percentage errors in the prices and yields for the proxy approach are 5.40%
and -10.83%, respectively, whearas those for the MLE approach are 5.71% and
-12.19%, respectively. None of the approaches generates a positive average per-
centage error in the yields. From Panel C of Table 4, we can seethat corporate
yields are overestimated on average by the CDG model, and thus this bias again
arises from the reported dividend yields.

In Figure 5, there is no obvious difference between the MLE approach and
the proxy approach in the CDG model, and most of the points arelocated in the
negative region for both the MLE and the proxy approach. Thissuggests that the
MLE approach does not improve the performance of CDG model.

There are two possible reasons for this. First, the CDG modeldoes not men-
tion about the modeling of equity value, and as this model involves a default bar-
rier, we use the DOC option framework as a proxy to model equity. However,
the CDG model is based on the leverage ratio that is related toa floating default
barrier. This characteristic substantially deviates fromthe DOC option. A model
risk is thus encountered. Second, there are many more parameters in the CDG
model, and some of the parameters that are related to the process of the leverage
ratio should be estimated using the book value of liabilities. In the best situation,
we can only use quarterly data, and therefore the quality of estimation is of great
concern in both the MLE and proxy approaches.

From the empirical result of the LS model, we learn that structural models
may be improved by considering a floating default barrier. The CDG model is
exactly designed for this purpose. However, it contains toomany parameters to be
estimated, and misses the modeling of equity. Thus, we cannot use high-frequency
equity data to estimate the parameters of the process for theleverage ratio. These
two undesirable features together make the CDG model less useful in predicting
corporate bond prices and difficult to test statistically. In future, a parsimonious
structural model should be constructed that incorporates asoft barrier and equity
value modeling.

The CDG model, shown in Table 6 and 7, consistently underestimates the
yields for all ratings and bond maturities. As the LS model may suffer from the
extreme overestimation of short-term bond yields in theory, the CDG model is
originally designed to pull down the short-term yields using a floating barrier.
However, this ultimately pulls down corporate bond yields for all maturities. Our
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empirical study shows that the LS model already underestimates bond yields on
average, even for short-term bonds, and thus pulling down the short-term bond
yields may not be necessary, except when overestimation is extreme. The CDG
model fails to improve the prediction of short-term bonds ormaintain its predictive
power for long-term bonds.

5 Conclusion

This paper investigates the systematic bias in the testing of structural models of
corporate bond pricing using proxies and gives a bias-reduced empirical compar-
ison of the Merton, LS, and CDG models. By option properties and simulation,
we show that the sum of the market value of equities and the book value of li-
abilities is an upwardly biased estimator for the market value of a firm’s assets.
When this bias is carried forward to test structural models,there is a significant
underestimation of corporate bond yields with structural models.

Apart from the proxy for firm value, we show that the dividend yields reported
by CompuStat that is also biased upward leads to overestimation of asset payout
ratio. If the reported dividend yield and the proxy firm valueare put together
in a barrier-dependent model, then the corporate bond yields for dividend-paying
firms will be overestimated. We give empirical evidence for this claim.

Another important contribution of this paper is that it empirically examines the
Merton, LS, and CDG models using maximum likelihood estimation. We find that
the MLE approach improves the performance of the Merton and LS models, but
not of the CDG model. We document that the LS model outperforms the Merton
model in almost all aspects, especially for short-term, long-term, and low rating
bonds. The CDG model performs the worst among the three models, as it suffers
from a lack of relation between the market value of equity andthe market value
of the firm. Moreover, the CDG model involves too many parameters, and thus
generates many difficulties in the estimation process.

Based on the empirical evidence, we give several suggestions for the develop-
ment of structural models in the future. For the testing of structural models, we
suggest that proxies should be chosen with a special care to avoid any systematic
bias, and whenever possible, statistical estimation methods should be preferred.
For the construction of structural models, we propose that aparsimonious model
should be developed that incorporates a soft default barrier. Furthermore, a desir-
able model should clearly specify the relationship betweenthe firm value and the
equity value.
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Appendix

A A proof of the bias of the proxy for firm value in
the LS model

Let V be the true market value of assets,Vproxy be the proxy for firm value andS
be the maket value of equity. The proxy for firm value then relates to the equity
and liabilities by

Vproxy = S +X.

We view the market value of equity as a DOC option on the underlying asset
V with a strike priceX, default barrierH, and rebateR. Thus,

S = DOC(V,X,H,R).

The no arbitrage pricing principle shows that the DOC price must be greater than
the intrinsic value if the barrier is set to the book value of liabilities, that is,

DOC(V,X,H,R) > V −X, (A.1)

whereH = X. If this is not the case (that is, ifV −DOC(V,X,X,R)−X ≥ 0),
then an investor can make an arbitrage profit by selling the asset atV to purchase
the DOC option. The remaining cash is put into a bank account.A profit can then
be made by taking two different actions that correspond to two possible scenarios.

1. If the asset priceV does not breach the barrier levelX before maturity, then
on the maturity day (T ), the investor will exercise the option to purchase the
asset for a value ofX so that the investor’s short position in the asset will
be canceled. An arbitrage profit of

[V − DOC(V,X,X)] erT −X

is then made at timeT .

2. If the asset value breaches the barrier levelX at time τ < T , then the
investor will receive a rebate ofR. The investor will purchase the asset
from the market right away for an amountX to cancel the short position in
the asset. An arbitrage profit of

[V − DOC(V,X,X)] erτ −X +R

is then made at timeτ .
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This proves the inequality (A.1), which is a model-independent property of DOC
options.

A consequence of the inequality is that

DOC(Vproxy, X,X,R) > Vproxy −X = S = DOC(V,X,X,R).

As the DOC option is an increasing function of the underlyingasset price, the
proxy firm value,Vproxy, is clearly larger than the true value,V , if the default
barrier is set toX. This shows that the proxy firm value in the study of EHH is an
upwardly biased estimator.

Actually, the inequality (A.1) holds for allH < X, because the DOC op-
tion is a decreasing function of the default barrier. Moreover, the difference
DOC(V,X,H,R)−(V −X) can be widened by decreasing the value ofH, which
implies that the smaller the default barrier the more significant the upward bias
that is induced by the proxy for firm value. Therefore, it is the most significant
bias in the Merton model.

B Likelihood function of the Merton model

The underlying asset price evolves as the Black-Scholes dynamics,

d lnVt = (µ− σ2/2)dt+ σdZt,

whereVt is the market value of assets at timet, µ is the drift of the business,σ
is the asset volatility, andZt is a standard Wiener process. Under the physical
probability measure, the density function oflnVt is given by

g(vi|vi−1) =
1

σ
√

2π(ti − ti−1)
× exp

{

− [vi − vi−1 − (µ− σ2/2)(ti − ti−1)]
2

2σ2(ti − ti−1)

}

.

The Merton model views the market value of equityS as a standard call option on
the market value of assetsV such that

S = V ·N(d1) −Xe−rT ·N(d2),

whereX is the book value of corporate liabilities,r is the risk-free rate,T is ma-
turity, N(·) is the cumulative distribution function for a standard normal random
variable and

d1 =
ln(V/X) + (r + σ2/2)T

σ
√
T

and d2 =
ln(V/X) + (r − σ2/2)T

σ
√
T

.
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As inference is made based on the observable market values ofequities, we
formulate the log likelihood function ofµ andσ by

L(µ, σ) =
n

∑

i=2

ln f(Si|Si−1, µ, σ), Si ≡ S(ti),

wheref(·) denotes the probability density function ofS andS(ti) denotes the
market value of equity at timeti. After applying the standard change of variable
technique, we obtain

f(Si|Si−1, µ, σ) = g(vi|vi−1, µ, σ) × [Vi ·N(d1)|V =Vi
]−1.

Hence, the log-likelihood function reads

L(µ, σ) =

n
∑

i=2

{ln g(vi|vi−1) − ln[Vi ·N(d1)|V =Vi
].

The MLE is the solution to the following optimisation problem.

max
µ,σ

L(µ, σ) s.t. S(ti) = C(ti, V (ti), σ), ∀ i = 1, 2, · · · , n.

C DOC option pricing formula

DOC(V,X,H,R) = V N(a) −Xe−rTN
(

a− σ
√
T

)

− V (H/V )2ηN(b) +Xe−rT (H/V )2η−2N
(

b− σ
√
T

)

+ R(H/V )2η−1N(c) +R(V/H)N
(

c− 2ησ
√
T

)

,

whereV is the market value of firm assets,X is the future promised payment,
H is the barrier level,σ is the asset volatility,r is the risk-free interest rate,T
is the time to maturity,R is the rebate paid to the equity holders upon default
(asset value breaches the barrier),N(·) is the cumulative distribution function for
a standard normal random variable, and

a =

{

ln(V/X)+(r+σ2/2)T

σ
√

T
, for X ≥ H,

ln(V/H)+(r+σ2/2)T

σ
√

T
, for X < H,
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b =

{

ln(H2/V X)+(r+σ2/2)T

σ
√

T
, for X ≥ H,

ln(H/V )+(r+σ2/2)T

σ
√

T
, for X < H,

c =
ln(H/V ) + (r + σ2/2)T

σ
√
T

and η =
r

σ2
+

1

2
.

D Pricing formulas of the structural models

D.1 The Merton model

The original Merton model considers a corporate zero-coupon bond with a matu-
rity T and face valueX. The model assumes a constant interest rater and market
values of assetsVt follow a geometric Brownian motion, i.e.

dVt = (µ− δ)Vtdt+ σVtdW1t, (D.2)

whereµ, δ andσ is the drift, payout ratio and volatility of market values ofassets
respectively andW1t is a standard Brownian motion.

Assuming no intermediate default, the terminal payoff of the bond is the min-
imum of the face amount of the bond and the market value of assets at maturity
VT . By discounting it under the risk neutral measure, the corporate bond price is
expressed as a risk-free bond minus a put option on the underlying assetsV with
a strike price ofX and maturityT , that is,

BPM
c (V0, X, T ) = Xe−rT − P (V0, X, T )

= Xe−rTN(d2) + V0e
−δTN(−d1), (D.3)

where

d1 =
ln(V0/X) + (r − δ + σ2

2
)T

σ
√
T

and d2 = d1 − σ
√
T .

As the original Merton model only deals with a zero coupon bond, EHH pro-
pose the extended Merton model to treat a coupon bearing bondas a portfolio
of zero coupon bonds. Default is assumed to occur only at coupon paying dates
when the market value of assets is less than a default barrierK. Upon default,
bondholders receive a portion of market values of assets, the recovery rateω. The
pricing formula of the extended Merton model is found to be

BPEM
c (V0, X, T ) =

n−1
∑

i=1

e−rtiEQ
[

(c/2)I{Vti
≥K} + min(wc/2, Vti

)I{Vti
<K}

]

(D.4)

+ e−rTEQ
[

(1 + c/2)I{VT ≥K} + min(w(1 + c/2), VT )I{VT <K}

]

,
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wherec is the coupon rate,

EQ[I{Vt≥K}] = N(d2(K, t)),

EQ[I{Vt<K} min(ψ, Vt)] = V0e
(r−δ)tN(−d1(ψ, t)) + ψ [N(d2(ψ, t)) −N(d2(K, t))] ,

d1(x, t) =
ln (V0/x) + (r − δ + σ2/2)t

σ
√
t

,

d2(x, t) = d1(x, t) − σ
√
t.

In formula (D.4), we assumen coupon paying dates of{t1, t2, · · · , tn}, thattn =
T , and useN(·) to represent the cumulative distribution function of a standard
normal random variable.

D.2 The LS model

For the LS model, asset prices are assumed to follow equation(D.2), and interest
ratesrt are assumed to be stochastic with dynamics of

drt = (α− βrt)dt+ ηdW2t,

or, equivalently,

drt = κ(θ − rt)dt+ ηdW2t, (D.5)

whereα, β, η, κ andθ are some parameters andW2 is another standard Brownian
motion process. The underlying asset price and the interestrate are correlated
processes with correlation coefficientρ.

Under the LS framework, default occurs if the market value ofassets at timet
(Vt) reaches a threshold valueK, or equivalentLt = Vt/K reaches one. Hence,
the pricing formula for a corporate zero coupon bond can be calculated as

BPLS
c (L0, r0, T ) = D′(r0, T )[1 − ωQ(L0, r0, T )], (D.6)

where

Q(L0, r0, T, n) =

n
∑

i=1

qi,

q1 = N(a1),

qi = N(ai) −
i−1
∑

j=1

qjN(bij), i = 2, 3, ..., n,
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ai =
− lnX −M(iT/n, T )

√

S(iT/n)
,

bij =
M(jT/n, T ) −M(iT/n, T )

√

S(iT/n) − S(jT/n)
,

and

M(t, T ) =

(

α− ρση

β
− η2

β2
− σ2

2
− δ

)

t

+

(

ρση

β2
+

η2

2β3

)

exp(−βT )[exp(βt) − 1]

+

(

r0
β

− α

β2
+
η2

β3

)

[1 − exp(−βt)]

−
(

η2

2β3

)

exp(−βT )[1 − exp(−βt)],

S(t) =

(

2ρση

β
+
η2

β2
+ σ2

)

t

−
(

2ρση

β2
+

2η2

β3

)

[1 − exp(−βt)]

+

(

η2

2β3

)

[1 − exp(−2βt)],

whereD′(r0, T ) is the price of a zero coupon bond with a face value of $1 and
time to maturityT under interest rates that follow the Vasicek (1977) model, and
N(·) is the cumulative density function of a standard normal distribution. Whenn
tends to infinity, the termQ(L0, r0, T ) is the limit ofQ(L0, r0, T, n) and thus we
can calculate the corporate bond price predicted by the LS model.

The pricing formula for a corporate coupon bearing bond is simply the sum of
all of the individual zero coupon bonds, that is,

BPLS
c (L0, r0, T ) =

n
∑

i=1

D′(r0, ti) ·Xi · [1 − ωQ(L0, r0, ti)], (D.7)

and X1 = X2 = ... = Xn−1 =
Xc

2
, Xn = X(1 +

c

2
).
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D.3 The CDG model

The CDG model assumes that the asset price and interest rate follow equations
(D.2) and (D.5), respectively. Moreover, the log-default threshold (kt = lnKt)
evolves as

dkt = λ[lnVt − ν − φ(rt − θ) − kt]dt, (D.8)

whereλ, ν andφ are constant parameters. A default event occurs if the market
value of assets hits the threshold value at timet or, equivalently, iflt = kt− ln(Vt)
is equal to zero. The pricing formula for a corporate zero coupon bond is obtained
as:

BPCDG
c (l0, r0, T ) = D′(r0, T )[1 − ωQ(l0, r0, T )], (D.9)

whereD′(r0, T ) is the Vasicek (1977) price of a zero coupon bond with a face
value $1 and time to maturityT , andω is the recovery rate.

By discretizing the time interval [0,T ], the CDG shows that

Q(l0, r0, T ) =

nT
∑

j=1

nr
∑

i=1

q(ri, tj),

q(ri, t1) = ∆rΨ(ri, t1) i = 1, 2, ..., nr,

q(ri, tj) = ∆r

[

Ψ(ri, tj) −
j−1
∑

v=1

nr
∑

u=1

q(ru, tv)ψ(ri, tj |ru, tv)

]

i = 1, 2, ..., nr and j = 2, 3, ..., nT ,

Ψ(r, t) = π(rt, t|r0, 0)N

(

µ(rt, t|l0, r0, 0)

Σ(rt, t|l0, r0, 0)

)

,

ψ(rt, t|rs, s) = π(rt, t|rs, s)N

(

µ(rt, t|ls = 0, rs, s)

Σ(rt, t|ls = 0, rs, s)

)

,

µ(rt, t|ls, rs, s) = ET
s [lt] +

covT
s [lt, rt]

varTs [rt]
(rt − ET

s [rt]),

Σ(rt, t|ls, rs, s) =

√

varTs [lt] −
covT

s [lt, rt]2

varTs [rt]
,

where

lQ(r) =
δ + σ2

2

λ
− ν + φθ − r

(

1

λ
+ φ

)

,

B(u)
κ =

1 − e−κu

κ
,
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ET
u [lt] = lue

−λ(t−u) − (1 + λφ)

(

ru +
η2

κ2
− θ

)

e−κ(t−u)B
(t−u)
(λ−κ)

−
(

ηρσ

κ
+ (1 + λφ)

η2

2κ2

)

e−κ(T−t)B
(t−u)
(λ+κ)

+ (1 + λφ)
η2

2κ2
e−κ(T−t)e−2κ(t−u)B

(t−u)
(λ−κ)

+

(

ηρσ

κ
+ λl

Q
(0) − (1 + λφ)

(

θ − η2

κ2

))

B
(t−u)
λ ,

ET
u [rt] = rue

−κ(t−u) +

(

θκ− η2

κ2

)

B(t−u)
κ +

η2

κ
e−κ(T−t)B

(t−u)
2κ ,

varTu [lt] =

(

(1 + λφ)η

λ− κ

)2

B
(t−u)
2κ

+

[

σ2 +

(

(1 + λφ)η

λ− κ

)2

−
(

2
ρσ(1 + λφ)η

λ− κ

)

]

B
(t−u)
2λ

+ 2

[

(

ρσ(1 + λφ)η

λ− κ

)

−
(

(1 + λφ)η

λ− κ

)2
]

B
(t−u)
(λ+κ),

varTu [rt] = η2B
(t−u)
2κ ,

covT
u [lt, rt] = −(1 + λφ)η2

λ− κ
B

(t−u)
2κ −

(

σηρ−
(

(1 + λφ)η2

λ− κ

))

B
(t−u)
(λ+κ).

Herein,N(·) is the cumulative distribution function of a standard normal random
variable, andπ(rt, t|rs, s) is the well-known transition density for a one-factor
Markovian Gaussian interest-rate process.
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Figure 1: Simulation result of the Merton model. In all of thefigures, ‘o’ indicates
the percentage error in the yields using the MLE and ‘x’ indicates the percentage
error using the proxy. Figure 2a plots the results for all bonds. Figures 2b, 2c, and
2d plot the results by high, medium, and low credit qualities, respectively.
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Table 1: Simulation results for the Merton model

MLE approach Proxy approach
% error % error % error % error % error % error
in prices in yields in spreads in prices in yields in spreads

Characteristics Mean Mean Mean Mean Mean Mean
(S.D.) (S.D.) (S.D.) (S.D.) (S.D.) (S.D.)

Panel A: Different levels of coupon rate:
c = 0% 0.06% -0.10% -4.14% 1.37% -2.53% -93.22%

(0.10%) (0.18%) (3.08%) (2.04%) (5.48%) (12.81%)
c = 8% 0.03% -0.09% -4.09% 0.75% -2.35% -92.28%

(0.05%) (0.18%) (3.96%) (1.26%) (5.64%) (14.64%)

Panel B: Different levels of total liabilities:
X = 0.3 0.00% -0.01% -2.92% 0.15% -0.22% -86.89%

(0.01%) (0.01%) (3.84%) (0.31%) (0.48%) (20.98%)
X = 0.5 0.03% -0.05% -4.08% 0.77% -1.64% -94.68%

(0.04%) (0.07%) (2.56%) (1.05%) (3.08%) (7.12%)
X = 0.7 0.10% -0.22% -5.35% 2.25% -5.45% -96.69%

(0.11%) (0.26%) (3.69%) (2.33%) (8.28%) (4.88%)

Panel C: Different levels of time to maturity:
T = 2 0.03% -0.15% -4.50% 0.70% -4.21% -93.77%

(0.05%) (0.28%) (5.08%) (1.44%) (8.95%) (22.86%)
T = 5 0.05% -0.11% -3.86% 1.18% -3.06% -95.34%

(0.07%) (0.18%) (2.66%) (1.86%) (5.36%) (5.70%)
T = 10 0.05% -0.07% -3.83% 1.26% -1.71% -91.83%

(0.09%) (0.11%) (2.71%) (1.84%) (2.69%) (8.66%)
T = 20 0.06% -0.04% -4.27% 1.10% -0.77% -90.08%

(0.10%) (0.06%) (3.15%) (1.69%) (1.12%) (10.67%)

A percentage error is calculated as the estimated value minus the true value divided by the
true value.
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Table 2: Simulation results for the LS model

MLE approach Proxy approach
% error % error % error % error % error % error
in prices in yields in spreads in prices in yields in spreads

Characteristics Mean Mean Mean Mean Mean Mean
(S.D.) (S.D.) (S.D.) (S.D.) (S.D.) (S.D.)

Panel A: Different levels of coupon rate:
c = 0% 0.07% -0.09% -0.73% 5.46% -5.95% -51.57%

(0.13%) (0.21%) (2.76%) (7.54%) (9.79%) (39.53%)
c = 8% 0.06% -0.10% -0.63% 4.32% -6.58% -55.01%

(0.11%) (0.22%) (0.93%) (6.90%) (10.46%) (39.50%)

Panel B: Different levels of total liabilities:
X = 0.3 0.01% -0.01% -0.88% 2.29% -2.53% -69.45%

(0.02%) (0.02%) (3.29%) (2.76%) (2.65%) (25.52%)
X = 0.5 0.04% -0.06% -0.50% 6.24% -8.84% -64.69%

(0.05%) (0.08%) (0.90%) (5.04%) (7.57%) (25.77%)
X = 0.7 0.13% -0.21% -0.67% 6.14% -7.42% -25.74%

(0.18%) (0.33%) (1.03%) (10.72%) (14.91%) (47.22%)

Panel C: Different levels of time to maturity:
T = 2 0.04% -0.15% -1.31% 2.88% -8.19% -74.88%

(0.10%) (0.34%) (3.91%) (6.90%) (15.49%) (45.48%)
T = 5 0.06% -0.11% -0.69% 4.37% -7.06% -61.68%

(0.13%) (0.21%) (0.83%) (7.38%) (9.99%) (39.11%)
T = 10 0.07% -0.07% -0.44% 5.77% -5.64% -45.96%

(0.13%) (0.13%) (0.56%) (7.34%) (6.51%) (31.79%)
T = 20 0.07% -0.05% -0.28% 6.53% -4.16% -30.65%

(0.12%) (0.09%) (0.40%) (6.87%) (4.56%) (23.64%)
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Table 3: Summary statistics of the corporate bond sample

Panel A
Characteristics Mean S.D. Minimum Median Maximum
Time to maturity (T ) 9.91 8.03 1.04 7.75 49.95
Coupon rate (c) 8.20 1.52 0 8.5 15
Yield-to-maturity (y) 7.68 1.54 3.94 7.48 22.49
Moody’s ratings 7.24 2.73 2 7 24
S&P ratings 6.99 2.67 2 7 16
Market capitalisation (MV) 7450.66 10733.12 230.55 3428.44 95983.1
Total liabilities (X) 5151.77 10728.75 113.6 2324.49 150424.59

Panel B
Year Number T c y Moody’s S&P MV X

of bonds ratings∗ ratings∗

1986 20 11.47 9.75 8.17 6.95 6.65 4479.68 4622.74
1987 29 10.46 9.18 9.55 5.93 5.93 6309.20 5575.82
1988 47 8.08 9.07 10.02 6.45 6.26 5286.23 9584.63
1989 52 8.48 9.11 8.93 6.69 6.46 6355.56 8661.61
1990 49 9.26 9.16 9.14 6.31 6.27 8371.26 10086.37
1991 68 10.89 8.91 7.47 6.46 6.25 8573.71 5124.63
1992 77 10.19 8.43 7.38 7.25 6.77 6892.26 4050.76
1993 94 10.21 7.67 6.41 7.30 6.90 7572.97 4120.06
1994 99 9.62 7.75 8.72 7.55 7.17 7752.24 4518.75
1995 138 10.02 7.63 6.40 7.66 7.43 8107.86 4203.99
1996 134 10.23 7.55 7.05 8.07 7.95 7754.13 3231.63

∗For the Moody’s rating, 1 stands for Aaa+, 2 stands for Aaa, and so on. For the
S&P ratings, 1 stands for AAA+, 2 stands for AAA, and so on. Forboth rating systems,
24 stands for NR, which means that the bond is not rated.
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Table 4: Overall empirical results for the Merton, LS, and CDG model

Method of Mean percentage Mean percentage Mean yield
estimation error in price error in yield difference

(Standard deviation) (Standard deviation) (Standard deviation)
Panel A: Empirical results of different models using the MLE approach:
Merton 2.37% -1.82% -0.03%

(8.78%) (35.34%) (3.21%)
LS 3.57% -4.38% -0.28%

(6.15%) (14.43%) (1.29%)
CDG 5.71% -12.19% -0.98%

(7.05%) (17.81%) (1.68%)

Panel B: Empirical results of different models using the proxy approach:
Merton 7.22% -15.17% -1.26%

(6.12%) (10.45%) (1.07%)
LS 6.19% -9.45% -0.73%

(5.53%) (8.69%) (0.92%)
CDG 5.40% -10.83% -0.87%

(8.22%) (21.53%) (2.06%)

A percentage error in the price is calculated as the model price minus the market
price divided by the market price. Similar calculations apply to other quantities. The
yield difference is obtained by subtracting the market yield from the model yeild.
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Table 5: Empirical results of the LS model when the default barrier is set to the
book value of liabilities

MLE approach Proxy approach
% error % error Yield % error % error Yield
in prices in yields differences in prices in yields differences

Characteristics Mean Mean Mean Mean Mean Mean
(S.D.) (S.D.) (S.D.) (S.D.) (S.D.) (S.D.)

Panel A: Empirical results with different ratings:
High ratings -3.71% 13.76% 1.13% 1.68% -0.41% 0.01%

(11.41%) (38.11%) (2.89%) (6.54%) (17.27%) (1.29%)
Medium ratings -3.74% 15.75% 1.41% 2.39% -1.91% -0.05%

(11.01%) (37.38%) (3.38%) (7.00%) (16.71%) (1.49%)
Low ratings -6.84% 42.66% 4.22% 8.49% -10.38% -1.02%

(15.58%) (79.12%) (7.79%) (12.73%) (33.01%) (3.64%)

Panel B: Empirical results with different maturities:
Short maturity -2.13% 19.33% 1.72% 2.36% -3.90% -0.23%

(10.84%) (61.39%) (5.16%) (4.61%) (23.84%) (1.94%)
Medium maturity -3.90% 14.31% 1.18% 2.13% -0.46% -0.01%

(11.03%) (30.66%) (2.49%) (7.47%) (16.07%) (1.41%)
Long maturity -6.42% 13.12% 1.16% 1.91% 1.01% 0.11%

(13.41%) (22.40%) (1.95%) (9.41%) (13.00%) (1.10%)
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Table 6: Empirical results of the Merton, LS, and CDG models by rating

MLE approach Proxy approach:
% error % error Yield % error % error Yield
in prices in yields differences in prices in yields differences

Characteristics Mean Mean Mean Mean Mean Mean
(S.D.) (S.D.) (S.D.) (S.D.) (S.D.) (S.D.)

Panel A: Empirical results for the Merton model:
High rating 2.69% -3.83% -0.27% 6.42% -13.38% -1.07%

(8.12%) (31.37%) (2.45%) (4.90%) (9.56%) (0.76%)
Medium rating 3.37% -4.69% -0.22% 7.86% -17.11% -1.36%

(8.24%) (27.94%) (2.67%) (4.93%) (7.53%) (0.69%)
Low rating -6.43% 40.13% 4.32% 16.71% -34.26% -3.58%

(14.38%) (73.82%) (8.39%) (14.04%) (12.95%) (2.62%)

Panel B: Empirical results for the LS model:
High rating 3.11% -3.62% -0.22% 5.34% -7.61% -0.56%

(5.66%) (12.87%) (1.06%) (4.05%) (6.63%) (0.47%)
Medium rating 4.24% -6.04% -0.36% 6.95% -11.53% -0.84%

(5.76%) (13.56%) (1.20%) (4.50%) (7.54%) (0.63%)
Low rating 7.90% -9.23% -0.86% 15.94% -28.79% -2.88%

(11.17%) (30.51%) (3.24%) (13.54%) (13.82%) (2.65%)

Panel C: Empirical results for the CDG model:
High rating 5.19% -11.33% -0.90% 4.68% -9.73% -0.77%

(5.57%) (13.95%) (1.11%) (6.89%) (16.11%) (1.33%)
Medium rating 6.23% -14.60% -1.14% 5.98% -12.87% -0.98%

(5.18%) (11.18%) (0.95%) (7.62%) (21.03%) (1.85%)
Low rating 11.42% -15.54% -1.49% 13.89% -19.30% -2.03%

(19.94%) (54.58%) (5.91%) (18.36%) (60.18%) (6.69%)
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Table 7: Empirical results of the Merton, LS, and CDG models by maturity

MLE approach Proxy approach
% error % error Yield % error % error Yield
in prices in yields differences in prices in yields differences

Characteristics Mean Mean Mean Mean Mean Mean
(S.D.) (S.D.) (S.D.) (S.D.) (S.D.) (S.D.)

Panel A: Empirical results for the Merton model:
Short maturity -1.24% 6.78% 0.80% 3.76% -18.18% -1.52%

(9.84%) (59.09%) (5.40%) (2.85%) (13.86%) (1.31%)
Medium maturity 2.63% -4.83% -0.32% 7.23% -14.18% -1.16%

(7.00%) (16.78%) (1.44%) (6.03%) (8.36%) (1.02%)
Long maturity 7.16% -7.34% -0.56% 12.41% -13.07% -1.09%

(8.65%) (10.94%) (0.97%) (6.29%) (7.92%) (0.66%)

Panel B: Empirical results for the LS model:
Short maturity 2.70% -5.88% -0.35% 3.89% -10.62% -0.79%

(4.05%) (18.63%) (1.64%) (2.77%) (9.63%) (0.98%)
Medium maturity 4.00% -4.66% -0.32% 6.58% -9.66% -0.75%

(5.97%) (12.06%) (1.11%) (5.96%) (8.54%) (0.98%)
Long maturity 3.85% -1.44% -0.07% 8.67% -7.17% -0.58%

(8.63%) (12.02%) (1.04%) (6.22%) (7.04%) (0.58%)

Panel C: Empirical results for the CDG model:
Short maturity 2.98% -14.62% -1.13% 2.60% -11.79% -0.92%

(5.25%) (24.77%) (2.43%) (6.11%) (31.28%) (3.07%)
Medium maturity 6.06% -11.81% -0.96% 5.83% -11.23% -0.91%

(7.24%) (15.13%) (1.35%) (8.10%) (15.87%) (1.49%)
Long maturity 8.93% -9.49% -0.79% 8.53% -8.41% -0.71%

(7.45%) (8.78%) (0.77%) (9.83%) (14.49%) (1.24%)
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Figure 2: Simulation result of the LS model. In all of the figures, ‘o’ indicates
the percentage error in the yields using the MLE and ‘x’ indicates the percentage
error using the proxy. Figure 2a plots the results for all bonds. Figures 2b, 2c, and
2d plot the results by high, medium, and low credit qualities, respectively.
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Figure 3: Empirical results of the Merton model. Figure 3a shows the errors in the
yields using the MLE approach and Figure 3b shows the errors using the proxy
approach.
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Figure 4: Empirical results of the LS model. Figure 4a shows the prediction errors
in the yields using the MLE approach with the default barriers set to the total
liabilities, and Figure 4b shows those with the default barriers set to the recovery
value. Figure 4c shows the prediction errors using the proxyapproach with the
default barrier set to the recovery value.
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Figure 5: Empirical results of the CDG model. Figure 5a showsthe errors in the
yields using the MLE approach and Figure 5b shows the errors using the proxy
approach.
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