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Structural Models of Corporate Bond Pricing with
Maximum Likelihood Estimation

Abstract

Many empirical studies on the structural models of corpobaind pric-
ing use a proxy to measure the market value of a firm’s asshts.|@ads to
the conclusion that barrier-independent models signifigamderestimate
corporate bond yields. Although barrier-dependent mokdeld to overesti-
mate the yield on average, they generate a sizable degredefastimation.
This paper shows that a frequently used proxy for firm asdaeva an up-
wardly biased estimator that makes the empirical framewai system-
atically against structural models of corporate bond pgci When struc-
tural models are examined using the maximum likelihoodmestion, we
find substantial improvement in their performance. Moreobeth barrier-
dependent and barrier-independent models tend to unuheagstcorporate
bond yields on average. Our empirical analysis shows thattsral models
are useful for long-term and medium-term corporate bonds,that im-
provement is needed for short-term bonds. We give suggesfar future
model development.

Keywords. Corporate bond pricing, credit risk, maximum likelihoodiestion,
structural models, systematic bias.



1 Introduction

Structural models of corporate bond pricing originatechwvtite seminal work of
Black and Scholes (1973) and Merton (1974; henceforth thedvienodel). By
considering the capital structures of firms, the Merton nhesvs equity as a call
option on corporate assets, and views corporate debt asalefzée debt less a
put option. However, this simple construction is inadequat describe actual
situations because it excludes the possibility of defagfibte maturity, the effect
of a stochastic interest rate, and the valuation of coupgaribg bonds.

Extensions and refinements of structural models have begmaously made
since the work of Merton. Black and Cox (1976) modeled théyesafault feature
by introducing a default barrier. Geske (1977) viewed a c@fe coupon bond as
a portfolio of compound options. Longstaff and Schwartzo08,9.S) developed
a simple framework that incorporates default barrier aoghsstic interest rate
to price corporate coupon bonds. Leland and Toft (1996, leFivéd the optimal
capital structure to determine corporate bond value. @d®lifresne and Gold-
stein (2001, CDG) proposed a floating default barrier apgréa model the target
leverage ratio so that the error in pricing short term bonds the LS model can
be reduced.

Each model claims to be able to theoretically capture certairket phenom-
ena, but it is important to contain empirical evidence wittual data. Jones,
Mason and Rosenfeld (1984, JMR) were the first to empiridaly the Merton
model. Based on a sample of firms with simple capital strestand bond prices
in the secondary market in 1977-1981, they showed that #aigied prices from
the Merton model were too high, with a 4.52% on average, aatdtiors were
more severe for non-investment grade bonds. Ogden (198ducted a similar
empirical study with newly issued bonds and obtained a amisult. Lyden
and Saraniti (2000) compared the performance of the MertdrL® models, and
found that yield spreads were underestimated with the Martodel and that the
LS model made no significant improvement.

Eom, Helwege and Huang (2004, EHH) recently conducted a oeimepsive
empirical study of structural models. They tested five $tmat models, includ-
ing the Merton, Geske, LT, LS, and CDG models, taking intooaot the asset
payout and stochastic interest rate. After carefully examg the capital struc-
tures of firms and characteristics of bonds, EHH obtainedrgsaof bonds from
1986-1997. To implement the structural models, they pbxiee market value
of corporate assets by the sum of the market value of eqaitidghe book value
of total liabilities, and used different ways to estimate tither model parame-
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ters. Within this setting, both the Merton and Geske mod®srier-independent
models) underestimated yield spreads on average, whérea3 tLS and CDG

models (barrier-dependent models) tended to overestiyngtespreads on aver-
age, although there were also a sizable number of undegdgiims. Despite their
empirical results, EHH proposed an extended Merton modetdapon bonds,
and set some criteria for bond selection.

There are many different ways to implement structural ¢mésk models. The
major concern is the estimation of the value and risk of a frassets, neither
of which are directly observable. Ronn and Verma (1986) psed a volatility
restriction (VR) method to estimate firm value and volatilty simultaneously
solving a pair of equations that match the observed stodegrand estimated
stock volatility with model outputs. The VR method was adapby the empir-
ical works of JIMR and Ogden (1987). EHH used the proxy for firmtue but
estimated the firm asset volatility by matching the estimiateck volatility with
the model output. Therefore, it is a kind of mixed approachai(1994) pointed
out several theoretical problems of the VR method and dér@vmaximum like-
lihood (ML) approach. For commercial purposes, Moody’s KM%es the VR
method to generate an initial guess of volatility, and thets it into an iteration
process to obtain a constant volatility in the stable stddlkeoprocess.

The implementation of structural models has gained atianti the literature
recently because it affects the performance and testinguaftaral models. Eric-
sson and Reneby (2005) showed, by a series of simulaticatsha ML approach
obviously outperforms the VR method in terms of both lackiatkand efficiency.
They claimed that, no matter how satisfactory the theaxkfeature of a model,
its empirical use may have been limited by the chosen imphkatien method.
Duan et al. (2004) showed that the iteration process in th&/kddproach is ac-
tually an EM algorithm for obtaining the maximum likelihoedtimator, which
means that it is equivalent to the ML approach of Duan (198#)wever, to our
knowledge, no empirical study of the structural models apooate bond pric-
ing has used the ML approach, and no academic work has beetedew the
comparison of the proxy and ML approaches.

This paper shows that structural models perform much b#ttee ML ap-
proach is used to estimate the model parameters, and, mpoetantly, that the
proxy for firm value has many potential problems. When thexpis carried for-
ward to valuation, a significant pricing error is associatgt all of the structural
models of corporate bond pricing. In contrast, the pricimgras reduced signifi-
cantly when the ML estimation is employed in an empiricatigtan the same set
of market data. As the proxy for firm value essentially reptathe market value
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of debt with the book value of debt, our study is related toghper of Sweeny,
Warga and Winters (1997), which points out that empiricatlgs in which the
market value of debt is replaced by the book value of debbditte debt-equity
ratio and cost of capital calculations.

Using option properties, we show that the proxy for firm vatian upwardly
biased estimator. As the default probability decreasel fivinh value, the over-
stated firm value leads to thmderestimation of corporate bond yields. Although
the underestimation is less severe for barrier-dependedels, the error is still
significant, and the natural question of why some empiricalies have found that
barrier-dependent modetsrerestimate corporate bond yields on average arises.
We discover that the dividend yield as reported by Compusfaich is measured
as the annual dividend divided by the end-of-year stockepris an upwardly
biased estimator. Consequently, the overstated dividegldsygenerate unrea-
sonably high bond yields for firms that pay dividends. Thie@fis particularly
pronounced in barrier-dependent models. Although the isidisnited to firms
that pay dividends, the induced error is significant enowgmake the predicted
yields larger than the market yields on average. Howeverutiderestimation of
yields also occurs for firms that pay little or no dividendg doithe proxy for firm
value.

Before further strengthening our arguments with empirdatia, we devise
maximum likelihood (ML) estimations of the firm asset value dhe asset value
volatility for each model. For barrier independent models, view equity as a
call option on the firm, and employ the ML approach of Duan @38 estimate
the parameters. For barrier-dependent models, we derihdLaastimation by
viewing the market value of equity as a down-and-out callapbn corporate
assets. Our simulation verifies that the maximum likelihesdmators (MLE)
are close to the true values, but that the proxy approachlgmeerstates firm
asset values and volatilities. The simulation shows thaptioxy approach leads
to an underestimation of corporate bond yields under bathMlerton and LS
models, whereas the MLE renders an accurate estimation.

The empirical data support our claims. We base our empisicaly on the
construction of EHH, including their criteria for the sdiea of corporate bonds,
but our study is different in that the firm asset values andtildles are obtained
through ML estimation, the default barriers are set to tleevery value of debt,
and the definition of stock dividend yield is revised so thaainnot exceed 100%.
We test the extended Merton, LS, and CDG models. Our reddis that the ex-
tended Merton model does not consistently underestimapocate bond yields,
and that the difference between the model and market yisldbout -3 basis
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points on average. The LS model also generates realistiepwith an accompa-
nying notable improvement on short-term and long-term samger the Merton

model. Interestingly, the CDG model shows no improvemest tive LS model,

and performs the worst of the three models.

This paper contributes to the literature by recognizinghiuglen bias in the
proxy for firm value in structural models and by giving a braguced empirical
evaluation of the Merton, LS, and CDG models. We find thatiberependent
models do not overestimate bond yields on average, but irsdtectural models
under investigation tend to underestimate corporate basldsy However, the
LS model is significantly better than the Merton model, wisciggests that ML
estimation techniques is useful in the implementationmfcstiral models.

The rest of the paper is organized as follows. Section 2 wevtbe possible
implementations of structural models, and discusses teegths and weaknesses
of each approach. Section 3 describes the ML estimation enfies the estima-
tion quality with a simulation. Section 4 reports our enmgatiframework and
the results for the extended Merton, LS, and CDG models. darsghe empir-
ical findings, we give suggestions for the future developnoércorporate bond
pricing modeling. Conclusive remarks are presented ini@eé&t

2 Implementation of structural models

A difficulty that arises when implementing structural madesl the estimation of
hidden variables, such as the value and risk of a firm’s asastet payout ratio
and default barriers. In this section, we first focus on déffe approaches to the
estimation of the market value and volatility of a firm, andatiss the strengths
and weaknesses of each approach. We then introduce ouedbfaasset payout
ratios and default barriers with reasons for their selestio

2.1 The value and risk of a firm’s assets

The simplest approach uses a proxy to measure the market ohk firm and
then estimates the volatility through a time series of thexpifirm values. We
call this estimation the pure proxy approach, which is dttuhe “Method 1”
used by JMR. In accounting principles, the market value ahaidiassets must be
equal to the market value of equities plus the market valugebfs. As the latter
is not observable in the market, the proxy approach appravamit by using the
book value of debts. Therefore, the proxy firm value, whicthessum of market



value of equities and the book value of liabilities, changesr time through the
fluctuation of equity values alone. This means that the firse@asolatility is
estimated as the standard deviation of the returns of theyghon values. This
approach does not depend on the particular features of @wtalimodel and is
typically easy to implement. However, the quality of estilm@a is unclear and
may be detrimental to the performance of structural models.

To respect the features of structural models, Ronn and V&I8&6) proposed
a volatility restriction (VR) method that obtains the firmlwa and volatility by
solving a system of two equations. Specifically, for the Merinodel the two
equations are

VoS
UUEW’ (1)

whereV ando, are the value and volatility of a firm§ and o, are the value

and volatility of the equity, and’(V; 0,) is the call option pricing formula. In
general, the first equation matches the observed equitggvidth the prices of
the model under investigation. The second equation résthe estimated equity
volatility to match the volatility that is generated by ayipg the Ito lemma to the
equity pricing formula used in the first equation. Althougk tmplementation is
slightly more tedious than the pure proxy approach, thedpeeery fast given

modern computing power. At each point in time, this methoadpces a pair
of estimates of firm value and volatility. Although the VR 1netl violates the

constant volatility assumption of most structural modélss the most popular
way of implementing structural models. Apart from acaderagearch, Moody’s
KMV uses this approach in one part of the estimation process.

In between the foregoing two approaches is the mixed propyaaeh that is
used in the empirical study of EHH (2004). The market valugfirim is estimated
as the proxy firm value, whereas a firm’s volatility is caliie to the second
equation of the VR method. In this way, the estimation proceds simpler
than that of the VR approach but respects the model feataresgh the second
equation of (1). Similar to the pure proxy approach, the igaf estimation is
not known.

The last estimation method we discuss is the maximum likelih(ML) esti-
mation proposed by Duan (1994). The idea of this method i®twel the likeli-
hood function for the equity returns based on the assungptiwat the firm value
follows a geometric Brownian motion and the equity valueisption on the firm.
By maximizing the likelihood function, parameters, suchiesdrift and volatility
of a firm, are obtained. The firm asset value is then extraatetyequating the

S = C(V;0,) and o, =

7



pricing formula to the observed equity price. This appraadheoretically sound
as itis proven to be asymptotically unbiased and allows ¢tinéidence interval for
the parameter estimates to be derived. The drawback of theppkoach is that
it is a tedious and relatively time consuming approach, lst@king some ten
seconds or longer to complete estimation with one sample pébwever, most
empirical studies involve the estimation of several thoddams, and hence sev-
eral thousand paths. One possible solution is to use ses@rgluters at once.

Duan (1994) pointed out several theoretical inconsisemnof the VR ap-
proach. Recently, interest in the implementation of strradtmodels has been
rekindled. Duan and Simonato (2002) applied ML estimatooaeposit insurance
value and showed that it outperforms the VR method with thedmanodel. Eric-
sson and Reneby (2005) used a series of simulations to skavth&éML approach
of Duan (1994) clearly outperforms the VR method in paramestimation for
both barrier-independent and barrier-dependent modedsouf knowledge, no
work has been conducted on either the empirical analysigroftsiral models
of corporate bond pricing with the ML estimation or the comigan of the ML
estimation and the two proxy approaches.

As an empirical analysis with ML estimation is carried outSaction 4, we
concentrate on the bias induced by the proxy firm value forniognent. We
consider the effects of using the proxy firm value in the Merand LS models,
where the former is representative of barrier-independwuels and the latter is
representative of barrier-dependent models. We will sh@t the proxy for firm
value is an upwardly biased estimator. Then, we will complaegoure and mixed
proxy approaches.

2.1.1 The Merton model

In the work of Merton (1974), there is no intermediate defaahd thus the ter-
minal payoff of zero coupon bond holders takes the minimurthefface value
of the bond ) and the market value of assefs . The current bond price
(BM(V,X,T)) is valued as a risk-free bond minus a put optiét{i(, X, 7)) on
the current market value of asseis)(with a strike priceX and a maturity7.
Specifically,

BM(V,X,T)=X-D(T)— P(V,X,T), (2)

whereD(T') denotes the default-free discount factor with a matufityHowever,
the payoff for equity holders resembles the call option fifaydh a strike price



X. DenoteS as the market value of equities. We then have
S=C(V,X,T),

whereC(V, X, T) is the standard call option pricing formula.
Let V,...,, b€ the proxy firm value. The definition of the proxy then assert
that

Vorowy = S + X or, equivalently,S = V.., — X.

By a property of standard call options, a call option premiaast be greater than
the intrinsic value, which implies that

C(‘/a X, T) =S5 = ‘/proazy - X< C(‘/proa:ana T)

As a call option is an increasing function of the underlyisget price, the forego-
ing inequality implies that the proxy firm value is an upwartlased estimator.
This overstated asset value causes the bond price of (2) dedrestimated and
hence the yield spreads to be underestimated, which esplagnsignificant un-
derestimation of corporate bond yields with the Merton niadenany empirical
studies.

2.1.2 The LS model

Black and Cox (1976) introduced a failure barrier to trigtyee default before
debt maturity, which means that the market value of equigiggewed as a down-
and-out call (DOC) option on the asset, whereas a zero cocpgorate bond is
a portfolio of a long position in a risk-free debt, a long pmsi in a down-and-
in call, and a short position in a put option. However, theuaibn of coupon
bearing bonds is very sophisticated and has no analytectitbility.

The LS model is a simple model for coupon bearing bonds basédeowork
of Black and Cox (1976). As the LS model does not mention theketavalue
of equities, we model it as a DOC option. Appendix A shows that proxy
firm value is an upwardly biased estimator if the defaultieais smaller than or
equal to the debt levet, and that the bias decreases with the value of the barrier.
We consider the default barrier in this range, because itasusual assumption.
A more detailed discussion of the choice of default barsegiven in the next
subsection.



Under the LS model, a coupon bearing bond is decomposed sutmaf zero
coupon bonds. This leads to the following pricing formulag(&\ppendix D).

BYS(V, X, H,T) = ZD 1 —wQ(V, X;, H,t,)], (3)
X
and X1:X2:-..:Xn_1:7€, Xn:X(1+§)7
wheren is the total number of coupon paying dafes, to, - - -, t,,} with ¢, = T,

andq is the risk-neutral default probability. As the proxy fomfivalue is an up-
wardly biased estimator, the default probabiligyV, X;, H,t;) becomes smaller
than its true value foi = 1,2, - - -, n if the proxy for firm value is used, and thus
the bond yields are underestimated.

2.1.3 The pure proxy approach versus the mixed proxy approdt

Both proxy approaches employ the same approximation of timevialue but dif-

fer in the estimation of a firm’s volatility. We have just showhat both proxy
approaches overestimate the firm value and hence undeagstthre corporate
bond yields. However, they may suffer from different degreeunderestimation
due to the effect of the volatility estimate.

Consider a sample at equally time-spaced observations of equity values
{S1,S,,--+,5,} and a fixed book value of debf over the period of observa-
tion. Both proxy approaches produce the same set of firm sélde Vs, - - -, V,. },
wherer = 5; + X. The pure proxy approach measures the asset volatilityeas th
sample standard deviation of the asset returns. That is,

si) |

Vil = Vi Sit1 — S 5,
=Var| ————| S5; | =V
ar ( v ) ar ( S i

It is easy to see that the asset volatility obtained in thig isdess than the stock
volatility o, becausé® < S;/(S; + X) < 1foralli =1,2,--- n. Moreover,

At

pure

O-pure|Si - X O-e|Si~

Si+ X
For the mixed proxy approach, the volatility of the firm isiestted using the
second equation of (1). By making the asset volatility tHgestt, we have

&l {@} X 0| —[@] X Opure
Si+X [0V]y_g.x S 1Y vosax Ser
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The quantitydS/0V, which is the delta of the standard call (down-and-out call)
option for the Merton (LS) model, is always less than 1. Thiplies that the
asset volatility of the mixed proxy approach is greater tthet of the pure proxy
approach.

A higher volatility leads to a high default risk of a firm andnoe a higher
credit yield spread. Therefore, the corporate bond yiettligted by the pure
proxy approach is systematically less than that of the mpeeay approach. In
Section 3, we show by simulation that the mixed proxy appnaawerestimates
corporate bond yield compared to the ML estimation. The tgatanation should
therefore be much more significant in the pure proxy approach

Because of the shortcomings of the proxy firm value and the \é&hod, this
paper examines the performance of structural models ofocarp bond pricing
with the ML estimation. To make the implementation possible specify the
default barrier and asset payout ratio in the following way.

2.2 The default barrier

Usually, if not always, the default barrier is assumed todss fthan or equal to
the book value of liabilities, which is a reasonable assionptWhen the asset-
to-debt ratio is larger than 1, there is no incentive for a tordeclare bankruptcy
or default on a loan, because the firm is still able to pay baaks by selling the
asset to the market. In fact, it is not difficult to observevawal firms with a value
that is much lower than the value of total debts.

However, there is no consensus of the exact position on tfaltldoarrier.
Empirical studies that use a prudential barrier settinghto debt level include
the works of Ogden (1987) and EHH. In the industry, Moody's Xidets the
default barrier to the default point, which is the short tetabts plus a half of
the long term debts, and is less than the total debt value.gvlad Choi (2005)
empirically documented that default barriers tend to be than the book value
of total liabilities, and that 20% of the firms in their samplave a zero default
barrier.

When implementing barrier-dependent models, we must fspedefault bar-
rier that is strictly positive but no greater than the boolugeof liabilities; oth-
erwise, several inconsistencies may be encountered. B@nice, a zero default
barrier is inconsistent with our assumption of using a camistecovery rate. In
our empirical study, we allow the default barrier to be theokery value, which
is the recovery rate time the book value of liabilities. Whka firm value hits
the barrier, it is assumed that the firm will declare bankey@ind bond holders
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will receive the remaining value of the firm. This remaininglue is actually
the recovery value paid to bond holders if we assume a frigs market and a
strict priority rule. As all of the models considered in thisper are based on the
assumption of no taxes and bankruptcy costs, this defauiiebas a consistent
choice. For a fair comparison, we also include the case tihgehe barrier to the
debt level as a control experiment.

2.3 The asset payout ratio

The comprehensive paper of EHH is the only empirical studgooporate bond
pricing taking into account the asset payout ratio so fars Tatio captures the
payout that the firm makes in form of dividend yield, shareurepase and bond
coupons to equity holders and bond holders. The data ofetiigield and stock
repurchase can be downloaded from Compustat.

All other things being fixed, the default probability inceea with the asset
payout ratio. As the firm value should move downward afteryoptaevent, the
probability that the firm will be unable to honor future oldtgns increases and
thus this payout ratio plays a crucial role in the pricing ofporate bonds.

We use the spirit as EHH, but make several modifications tio #pproach.
First, we do not directly use the reported dividend yieldg,rather use a revised
definition. The reported dividend yield from Compustat ikakated by dividing
the annual dividends by the end-of-year stock price, whsami upwardly biased
estimator. For firms that pay a large amount of dividendscthveesponding fig-
ures are usually in excess of 100%. For example, the repditatend yields for
the USG Corporation in 1988 and the Georgia Gulf Corporatidr®90 are 668%
and 282%, respectively. These figures are misleading be¢hasactual payout
should not be that high; otherwise, an arbitrage profit camade by purchasing
the stock to receive dividends, the total value of which Bsager than the initial
investment.

An overstated dividend yield leads to an overestimatiorsseapayout ratio
and hence corporate bond yields. When we take this effeetliegwith the fact
that the underestimation of corporate bond yields thatused by the proxy firm
value is less severe for barrier-dependent models, we hpoteatial explanation
for the finding of past empirical studies that barrier-defmm models tend to
overestimate corporate bond yields on average, but witlzeable number of
underestimations. In particular, underestimation octorsow-dividend paying
firms and overestimation occurs for firms that pay a large arhoiudividends.

Strictly speaking, the reported dividend yield gives ameeous perception to
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investors, because the equity price should be adjustedwawirafter a dividend
payment, and the end-of-year stock is actually the pricer dfte dividend. If
this is used as a denominator to compute the dividend yibkeh the number
will be overestimated. Thus, we revise the definition to e dhnual dividend
over the sum of the end-of-year stock price and the annualetid. This value
is easy to obtain and is guaranteed to be less than or equalofh.1 Suppose
that the reported dividend yield 5 The revised dividend yield then becomes
¢=q/(1+4q).

Second, we recognize that the effects of the asset payootaia different
for equity holders and bond holders. In other words, we usedifferent values
of asset payout ratio in estimation and corporate bondn@iprocedures. We
now offer an explanation for this. For stock options, thampholder cannot re-
ceive dividends paid before an option’s maturity, and thesdividend yield in
the call option pricing formula lowers the option price taaant for this effect.
However, the story is rather different for equity holdershéi the asset payout
is due to stock dividend, the payout amount is essentiallgrgio equity hold-
ers, who experience no loss. Bond holders, however, suffer & higher credit
risk. The same concept applies to stock repurchases as theyrgoes to equity
holders to buy back the stocks, and thus the effective asseiup ratio to equity
holders should exclude the stock dividend and stock regsehThe last compo-
nent of the asset payout ratio is bond coupons. However, boandons are also
not included in the effective asset payout ratio to equitidérs in our estima-
tion process because the book value of liabilities has dyréaken into account
the coupon payment. Therefore, we set the effective asgeupaatio to equity
holders to zero to avoid a double count of the bond coupomwteffe

In the bond pricing procedure, we measure the asset paytubraccording
to the revised dividend yield and stock repurchases, but exclude bond coupons
(see Section 4.2 for more information). The reason is thapoo values have
been entered into the corporate bond pricing formula: ifabepon values are
also included in the asset payout ratio, then the effecthalcounted twice. In
fact, the original papers of Merton, LS, and CDG use a zeretgmss/out ratio. In
the later two papers, the effects of dividends and stockrotyases are abstracted
from the analysis but the coupon effect is added. Therefeeeassume that the
asset payout ratio to debt holders does not contain boncosup

In summary, the implementation of structural models witbxpes can pro-
vide us with a distorted picture of the performance of the et®d For barrier-
independent models, the proxy for firm value is the dominaiaded factor that
leads to the underestimation of credit yield spreads. Fordradependent models,
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the effect of this factor is less severe, but still significatowever, the overstated
asset-payout ratio may generate a bias to dividend paymg fwhich results in
the overestimation of credit yield spreads.

3 Maximum Likelihood Estimation

As the proxy for the market value of assets is biased upwaedadwopt the maxi-
mum likelihood estimator (MLE) approach in this paper. Farrter-independent
models, we use the approach of Duan (1994), and for barejeertdent models,
we view equity values as a down-and-out call option on thevafue to devise the
corresponding MLE approach. This section provides theld#tthe formulation
and verifies the approach by means of a simulation.

3.1 The MLE approach for the Merton model

The parameters are the asset drify &nd asset volatilityf). For the Merton
model, Duan (1994) showed that the likelihood function feg €quity return is

L(p,0) = Z{lng(w\vifl) — In[Vi - N(dy)lv=v;]}, (4)

whereN(+) is the cumulative distribution function for a standard natmandom
variable and/; andv; denote the asset price and the log of the asset price at time
i, respectively. The explicit expressionsgif) andd,; are given in Appendix B,
where we also present the detail formulation.

MLEs are parameters that maximize the likelihood functi®n $ubject to the
constraints that the market values of equities are equéde@all option pricing
formula, that is,

mu%XL(u,a) st. S(t;)=C(t;,V(t),o0),Vi=1,2,-+- n.
Then, the firm value¥'(¢;) are solved numerically from the call option formula
using the value of.

3.2 The MLE approach for barrier-dependent models

For barrier-dependent models, the market value of equityewed as a DOC
option, rather than a standard call option. The pricing idarof a DOC option
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is given in Appendix C. As the asset price should not go belendefault barrier
before bankruptcy occurs, the density function of the lege&price becomes [see
Rubinstein and Reiner (1991)],

g (vl p,0) = @i —viy) = STV 4wy — 2h), (5)

where .
L
=log H ==+ =
h =log H, ==+
1 xr — —0'22'ti—tl', 2
o) o {2 )
o\/2m(t; — t;_1) 202(t; — ti—q)

In our estimation process, the functigfi(-|-) takes the form of (5) if the
underlying asset value is larger than the barrier, and z#rerwise. Given the
explicit formula of a DOC option, the option delta (1)) is calculated by differ-
entiating the pricing formula with respect 6. Following a similar procedure to
that of the Merton model, we obtain the log-likelihood funatas being

LE(p,0) = Z{ln 9" (ilviey) = In [Vi - A(V)ly—v,)]}- (6)

We then estimate the parameters by solving the followingrapation problem.

max LZ(u, o) s.t.  S(t;) = DOC(t;, V(t;),0), Vi=1,2,---,n.

o

Finally, we obtain the firm valu& (¢;) inversely from the DOC pricing formula.

3.3 Survivorship consideration

In our empirical study, the sample is drawn from survival pamies, which may
lead to a survivorship bias in the estimations. We recogtimaemaximum likeli-
hood estimation with survivorship has been considered @t al. (2003), who
found that the original approach of Duan (1994) leads to aveug bias in the as-
set drift, but that the other parameters are obtained witlyla duality. However,
the survivorship bias has no impact on the testing of cotpdyand pricing mod-
els. Structural models value corporate bonds in the riskrakworld in which
asset drift is replaced by the risk-free interest rate. Thius biased drift value
plays no role in corporate bond pricing formulas. The indo®f the drift in the
estimation procedure aims at enhancing the estimatiortgwékhe volatility.
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3.4 Simulation tests

Our simulation verifies the performance of the estimatidreste. In this simu-
lation exercise, we use= 6.5%, u = 8%, o = 0.25, and an initial firm value of
1. One-year (260-day) sample paths are generated accaodimg Black-Scholes
dynamics. Consider the debt maturitiésf 2, 5, 10 and 20 years. The face value
of the debtX takes three possible values, 0.3, 0.5 and 0.7, which représe
different leverage levels (or creditworthiness) of a comypalo test the Merton
model, we compute the market values of corporate equitigbdgtandard call
option formula. However, we use the DOC option pricing folato calculate the
market values of equities under the LS model.

Suppose that the extended Merton model introduced by EHHAppendix
D, and LS model are correct models for two different econgmildis simulation
on the one hand, attempts to show that the proxy for firm valadd to an under-
estimation of corporate bond yields, and on the other handeésl to check the
performance of the MLE. We directly compare the MLE approath the mixed
proxy approach, which produces less underestimation iporate bond yields
than the pure proxy approach. We first simulate equally sp&ced market val-
ues of the firm based on specified parameters, and then geeegraty values and
corporate bond prices using both models. These generatedidathen regarded
as market observable values. The detailed procedures ditEeapproach and
the proxy approach are summarized as follows.

1. Extended Merton model with" = X andw = 0.

(a) MLE approach. The approach of Duan (1994) is employedste e
mate the asset volatility and the market value of assets. [Bygmg
the estimates back into the extended Merton model of corpdi@nd
pricing, the predicted credit yield spreads are obtained.

(b) Proxy approach. We estimate the market value of a firnsstasy the
proxy for firm value. The asset value volatility,, is solved from the
equatiorns, = avs%g—f/:, whereo, is the equity volatility, ands; andV;
denote the market value of equity and the proxy asset valtimat,
respectively. These estimates are substituted into tlemdgt Merton

model to estimate credit yield spreads.
2. LS model withH = X andw = 51.31%.

(&) MLE approach. We view the market value of equity as a DOtibap
and perform our proposed MLE approach to estimate the askilv
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ity and the market value of the firm. These estimated parasiate
used to derive corporate bond yield using the LS model.

(b) Proxy approach: We use the same procedure as for thedextdner-
ton model, except that the LS model is used this time.

Finally, we compare the credit yield spreads and bond pticasare obtained
from the proxy and MLE approaches for each model.

The simulation results for the Merton and the LS models apeetively given
in Table 1 and Table 2, and the percentage errors in pricglslsyand yield spreads
are reported. The percentage error in prices is the modspminus the market
price divided by the market price, where a positive numbdicates an overes-
timation. The percentage errors in yields and yield spreael<alculated in the
same manner.

3.4.1 Simulation results for the Merton model

Table 1 shows that the average percentage errors in pridegelds are all close

to zero for the MLE approach, whereas using the proxy firmevéhe average per-
centage errors in prices are significantly positive andeghioshe yields and yield

spreads are significantly negative. Panel A shows that tioeseare more severe
for zero coupon bonds, and Panel B implies that the errorsnare pronounced

for high leveraged firms. The percentage errors in yieldagseshown in Panel
C, are consistently less than -90% for all maturities. Theugation suggests that
underestimations of bond yields with the Merton model ambpbly due to the

hidden bias of the proxy for firm value.

We further illustrate our simulation result by graphs. Igute 1, the circles
represent the percentage errors in yields that are obt&ioedthe MLE, and the
crosses represent those from the proxy approach. Figurertaies the result for
all credit quality and Figures 1b-d present the results fghhmedium and low
ratings respectively. The crosses are generally beneathittles for all cases,
which shows that the proxy for firm value leads to the underegton of corpo-
rate bond yields.

3.4.2 Simulation results for the LS model

Table 2 summarizes the results of the LS model. It can be desritte MLE
approach definitely outperforms the proxy approach, anttktieaerrors that are
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induced by the proxy are less significant than those of thedvienodel. How-
ever, the errors are not negligible.

Figure 2 consists of four pictures. Figure 2a plots the peege errors in the
yields against the debt maturities for all bonds. We can satthe error points
of the MLE are located around zero, whereas most of the pointee proxy
approach are negative. Figures 2b, 2c and 2d show the pageeetrors in yields
for high, medium, and low rating bonds, respectively. Weogeize that proxy
always underestimates the yields of high and medium ratomgl®. In Figure 2d,
we can see that there are some points with positive peraeetagrs in the yields
with the proxy approach, and thus the errors that are gestelat the proxy are
partially offset by the imposition of a default barrier fom rating bonds.

In summary, our simulation further supports that the proifiron value is in-
appropriate and leads to the underestimation of bond yetds all other param-
eters are fixed. This bias occurs in both barrier-dependaehbarrier-independent
models.

4 Empirical study

An empirical study is conducted to check whether the peréorce of structural
bond pricing models is improved when the MLE approach is yaad whether
the empirical results in the past are driven by the proxy fon fvalue. We also
empirically examine the Merton, LS, and CDG models usingMih& approach.

4.1 Criteria of bond selection

Based on the criteria of EHH, we select bonds with simpletabptructures and
sufficient equity data. The bond prices on the last tradingaf@ach December
for the period 1986-1996 were obtained in the Fixed Incom@absse. We choose
non-callable and non-putable bonds that are issued bytinaleand transportation
firms, and exclude bonds with matrix prices and those wittrunitégs of less than
one year. There are nearly 7,000 bonds that meet thesaacriter

To have simple capital structures, we consider firms witly mme or two
public bonds, and sinkable and subordinated bonds aredealuWe examine
the characteristics of the firms with information that wasviled by the Rating
Interactive of Moody’s Investor Services. We regard firm#hvén organization
type as corporations and exclude those with a non-US dami€ilrms in broad
industries such as finance, real estate finance, publityyitisurance and banking
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are also excluded from our sample. At this stage, our sanggisists of 2,033
bonds.

To measure the market value of corporate assets, we resirsztlves to firms
that have issued equity and provide regular financial stetésn Therefore, we
downloaded the market values of equities from Datastreatintatal liabilities
and reported dividend yields from CompusStat for the peri®86lto 1996. By
matching all of the available data and excluding some firnas Were acquired,
our sample ultimately contains 807 bonds issued by 171 firms.

The summary statistics of the data are exhibited in Table&hePA shows
that our sample contains bonds with maturities that rang® fone year to fifty
years, with an average of ten years. This wide range of niegsienables us to
study the maturity effect of different structural bond prigg models. Our sample
covers zero coupon bonds and bonds with high coupon ratesmaximum of
15%. The range of yield-to-maturity is wide, from 4% to 22.5Phe bonds in the
sample fall within a large credit spectrum. Most bonds bgltmthe investment
grade according to Moody’s and S&P, and some are junk bondesd large
discrepancies in ratings allow us to check the performahttestructural models
for different credit qualities. Our sample includes diffet sizes of firms that carry
at least US$231 million of market capitalisation to a maximaf US$96 billion.
The total liabilities of these firms range from US$114 milito a maximum of
US$150 billion.

Panel B presents the mean of the time to maturity, coupors,rgield-to-
maturity, Moody’s rating, S&P rating, market capitalizats, and total liabilities.
The mean of the Moody’s and S&P ratings are quite stable Hauvalues of time
to maturity, coupon rate, and yield-to-maturity vary frono811.5, 7.55 to 9.75,
and 6.4 to 10, respectively.

4.2 Parameters of the models

Firm-specific parameters include the market value of ag$8tsasset volatility
(o), book value of liabilities '), asset payout rati@), and default barriert{).

To make comparisons, we use both the proxy and the MLE aplpesdo esti-
mate the market value of assets and the asset value vglailit proxy approach
always refers to the mixed proxy approach discussed in@e2ti Although not
reported, the pure proxy approach performs very poor. InrMh& framework,
estimation is based on a one-year time series of marketvalequities. We use
the approach of Duan (1994) for the Merton model and theilikeld function of
(6) for the barrier-dependent models, which include the h&@DG models. We
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assume that a zero rebate is paid to equity holders uponltiefau

To refresh ideas, we recall that, for the proxy approachhbeket value of
corporate assets is measured by the sum of the market vakgudfes and the
book value of total liabilities. The asset volatilities aretained by the leverage
O = avg—:g—%, whereS; andV, denote the equity value and the proxy firm value at
timet, respectively. Moreoves;,, ando. denote the asset volatility and historical
equity volatility respectively. The historical equity atility is measured over a
window of 150 trading days.

The asset payout ratig, is the equity payout ratio times leverage. The equity
payout ratio is the revised dividend yield for firms with nodt repurchases in
the year. Letj be the reported dividend yield adgibe the annual dividend. Then,
the asset payout ratio for this case is given by

Db s 4 5 S
“Ss+Dv _1+qv N
Otherwise, the asset payout ratio is calculated as

_ D+D, S
- S+D+D,V’

whereD, is the total value of stock repurchase over a year. Howetgak sepur-
chase happens very rare compared to the stock dividendefbiner the effect of
asset payout ratio is largely driven by dividends.

For the extended Merton model, we follow EHH and specify tsfadlt thresh-
old K as the face value of total liabilities. For the LS model and30Models, the
(current) default barriersl are set to the recovery rate times the face value of the
total liabilities, which is a consistent choice. As equitiders receive no rebate
upon default, the recovery value that is received by bonddrsishould be equal
to the value of the whole firm at the time of default. Barriepdndent models as-
sert that the firm value is at the barrier level upon defauit ifdoankruptcy costs
are taken into account, the default barrier is expected todiger. In this paper,
we abstract the bankruptcy costs.

4.2.1 Interest rate parameters

The Merton model assumes a constant interest rate which vesures by the
instantaneous interest rate fitted to the Nelson-Sieg@7)Ll&odel. The LS and
CDG models employ stochastic interest rates following tagicek (1977) model.
We calibrate the four parameters that are used in the Vagl&3k7) model to the
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yield data of constant maturity treasury bonds, the datalo€rvwere obtained
from the Federal Reserve Board’s H15 release.

Specifically, the Nelson-Siegel (1987) model estimatesytakl of default-
free bondsyys, as

N 1—677—/51 _ /5
Yns = ﬁo+51(ﬁ1+52)f—ﬁ26 e

wherer is the time to maturity. To calibrate the parameters, wectetor the
optimal values of3y, 31, 32, andd; such that the sum-of-squared-error between
the model yields and the market yields is minimized.

The Vasicek model is calibrated in the same way as the Nebsegel model.
The LS and CDG models require the correlation coefficientvbeh the asset
value returns and changes in the risk-free rate. As the magtees of assets
have been estimated either by MLE or the proxy approach, veettly calculate
the correlation coefficienty, between the asset returns and changes in interest
rate.

4.2.2 Stationary leverage process parameters

The stationary leverage process parameters are requirdaef€ DG model. We
estimate two sets of parameters for both the MLE and the pappyoaches. By
the asset price process of (D.2), the process of the logitidfarrier is given by
(D.8). By an application of Ito’s lemma, the process of thg-larget-leverage-
ratio,In L, = In(V;/ H;)

dinL, = [+ v+ Nory—1InL,)]dt + odWhy, (7)
v o= (v—90)—(§+0%/2)/\
Given the value of the default barrier and the market valdessets, which are
either estimated by the MLE or the proxy approach, the ors-time series of
In L; are produced. We then search for the optimal valueés @f » by minimizing

the sum-of-squared-error between the “observed” and giestlvalues of the log-
target-leverage ratios, where the predicted values acalesdd by equation (7).

4.2.3 Bond specific parameters

The coupon ratecf and maturity ') of the bonds are obtained from the Fixed
Income Database, which enables us to derive the remainungocepaying days
for each bond.
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For the recovery rateJ) of a bond, the paper by Altman and Kishore (1996)
shows that the recovery rates for senior secured and sensacured debt are
about 55% and 48%, respectively. Keenan, Shtogrin and $obgD99) also
find that the average bond recovery rate is around 51.31%edbtte value of a
bond. We follow EHH in taking a recovery rate of 51.31%. Welgpipis recovery
rate to the extended Merton, LS, and CDG models.

4.3 Empirical results

The empirical results for the Merton, LS, and CDG models ararsarized in
Table 4-7, in which the percentage errors in prices, yiedds yield spreads are
provided. The effects of agency ratings and bond maturieseported in Table
6 and Table 7, respectively. We regard bonds with an S&Pgati\ or above as
high rating bonds, those with a BBB-rating as medium ratiogds and others as
junk bonds. We regard bonds with a maturity of less than oaktqu5 years as
short-term bonds, of 5-15 years as medium-term bonds, deas long-term
bonds.

4.3.1 The Merton model

Table 4 shows the performance of the Merton model. The aeguagcentage er-
rors in the prices and the yields are respectively 7.22% a8d 7% for the proxy
approach, and for the MLE approach the errors in the pricéstlaa yields are
2.37% and -1.82%, respectively. The MLE approach thus stergily improves
the performance of the Merton model in predicting pricesyantils.

A similar conclusion can be drawn for the yield spreads. bt,fthe MLE
approach produces an average prediction error in the y@ld3 basis points,
whereas the proxy approach gives an error value of -126 pasits. This offers
an empirical evidence that the proxy firm value makes the dtemiodel generate
a sizable of underestimation of yields. One may recogniaéttie standard de-
viations of our MLE approach are greater than those of th&ypapproach. We
stress that a small standard deviation together with a wnoegn value indicates
a serious bias.

Figure 3 plots the errors in the yields against the bond ntegsir Figure 3b
shows the performance of the proxy approach, in which mastggall into the
negative region. Figure 3a shows the empirical results@MhE approach. We
observe that most points are crowded near zero, which peswadidence that the
proxy for firm value leads to the underestimation of bonddgelMoreover, the
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MLE approach offers a better estimation of corporate bowtith, quite a number
of outliers in the set of short-term bonds. Although the Merinodel underes-
timates corporate bond yields on average, it does not denslig underestimate
the yields, as Figure 3a shows that there are many pointgipdhitive region.

Using the MLE approach, the Merton model, shown in Figure&d) seri-
ously overestimate yields for short-term bonds. This isswprising, because
the Merton model produces unrealistically high yields toorg-term, but not very
short-term, bonds. The Merton model, shown in Panel A of@&bhkends to un-
derestimate the yields for high and medium ratings and sogmtly overestimates
yields for low ratings. When we check our database, we fintrttoest junk bonds
have short maturities. Therefore, the result may be driyetihhe maturity effect,
rather than the effect of ratings. From Panel A of Table 6, aresee that the Mer-
ton model overestimates short-term bond yields, undenestis long-term bond
yields, and performs the best for medium-term bonds.

4.3.2 The LS model

For the LS model, Table 4 shows that the MLE approach agaipeoiarms the
proxy approach, and that the proxy for firm value leads to thgevestimation of
bond yields. The average percentage error in the priceqéptoxy approach
is 6.19%, which is significantly positive, whereas the agerpercentage error in
the yield is -9.45%, which is significantly negative. Adowithe MLE approach,
the average percentage errors in the prices and yields &rés3and -4.38%, re-
spectively, and are relatively small in magnitude. The grapproach considered
in this paper does not include the reported dividend yielduses the revised
version. Therefore, the overestimation in corporate weikth barrier-dependent
models in the past empirical studies may be due to the didigegids reported
by Compustat since the overestimation does not occur ieredilr proxy or MLE
approaches.

To further examine the effect of the reported dividend \selde carry out the
empirical analysis again by setting the default barrieh®hook value of liabil-
ities to rule out the effect of our choice of default barri€@able 5 shows that the
proxies for firm value and the default barrier together doowsrestimate bond
yields in general, and therefore the overestimation indyielthe consequence of
using the reported dividend yield. Interestingly, whenMieE approach is used
with barrier setting to the book value of liabilities, theesage bond yield is over-
estimated even with the revised dividend yield. Howeveemive compare Table
5, Panel B of Table 6 and Panel B of Table 7, we can seen thattfiermance of
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the MLE approach with the barrier set to the recovery valuaush better than
the performance of the approach with barrier at the total dsel. This suggests
that setting the default barrier to the recovery value isevappropriate.

Figure 4 plots the difference between the model and marletyiagainst
bond maturity. The LS model (Figure 4a) tends to overesesgields when de-
fault barrier is set to the book value of liabilities, but @nds to underestimate
yields (Figure 4b) when the default barrier is set to the vegpvalue. This im-
plies that there is a default barrier between the two valueh $hat the average
percentage error in the yields is zero. This is a reasondidergation, as the
bankruptcy costs, which we ignore, should pull up the bataehigher than the
recovery value. Future research should consider the effd@nkruptcy costs.

Figure 4c presents the results for the proxy approach wetd#fault barrier
set to the recovery value, in which most of the points aretkxt@ the negative
region. A comparison to Figure 4b and 4c shows that the ustieration of yields
is less severe with the MLE approach, which suggests thalilbié approach
improves the predictive power of the LS model.

Like the Merton model, there is evidence, as shown in Figireof both
extreme underestimation of yields and extreme overestimdiut the problem is
much less severe here. Extreme overestimation often apfmathe short-term
bonds. Table 7 reveals that the LS model does better on hadtiong-term
bonds than the Merton model. The percentage error in thes/ief short-term
bonds is -5.88%, the magnitude of which is smaller than théteoMerton model
(6.78%). The improvement is obvious in the case of long-teomds, as the LS
model generates a percentage error of -1.44% against ttta derton model of
-7.34%.

Table 6 shows that the LS model outperforms the Merton maatdddth high
and low rating bonds. The percentage errors in the yieldswfrhtings in the
LS and Merton models are -9.23% and 40.13%, respectivethobh the per-
centage error in high ratings for both models are similag,tB model is much
less volatile. The standard deviation of the percentaga®in the yields is al-
most half of that of the Merton model. Therefore, the impositof a default
barrier improves structural models, as it captures theetfeearly default. This
improvement is particularly pronounced for both long-tdomds and low rating
bonds. However, the LS model is still inadequate in desugitihe credit risk
of short-term bonds. To reduce the extreme overestimati@hart-term bond
yields, it may be useful to consider a floating barrier model.
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4.3.3 The CDG model

Table 4 contains the overall performance of the CDG modeloWéerve that the
MLE approach and the proxy approach have a similar perfoceaiihe aver-
age percentage errors in the prices and yields for the prpgyoach are 5.40%
and -10.83%, respectively, whearas those for the MLE agbreae 5.71% and
-12.19%, respectively. None of the approaches generatesitivp average per-
centage error in the yields. From Panel C of Table 4, we carrsgecorporate
yields are overestimated on average by the CDG model, arsdtiimibias again
arises from the reported dividend yields.

In Figure 5, there is no obvious difference between the MLREreach and
the proxy approach in the CDG model, and most of the pointsoaaed in the
negative region for both the MLE and the proxy approach. Shiggests that the
MLE approach does not improve the performance of CDG model.

There are two possible reasons for this. First, the CDG mdaoe$ not men-
tion about the modeling of equity value, and as this modallwes a default bar-
rier, we use the DOC option framework as a proxy to model gquitowever,
the CDG model is based on the leverage ratio that is relatedltmating default
barrier. This characteristic substantially deviates fitbenDOC option. A model
risk is thus encountered. Second, there are many more ptanie the CDG
model, and some of the parameters that are related to thegwo€ the leverage
ratio should be estimated using the book value of liabditie the best situation,
we can only use quarterly data, and therefore the qualitgti@tion is of great
concern in both the MLE and proxy approaches.

From the empirical result of the LS model, we learn that $tmat models
may be improved by considering a floating default barriere DG model is
exactly designed for this purpose. However, it containstany parameters to be
estimated, and misses the modeling of equity. Thus, we ¢arsedigh-frequency
equity data to estimate the parameters of the process féevbeage ratio. These
two undesirable features together make the CDG model ledalus predicting
corporate bond prices and difficult to test statistically.future, a parsimonious
structural model should be constructed that incorporasedtebarrier and equity
value modeling.

The CDG model, shown in Table 6 and 7, consistently undeneséis the
yields for all ratings and bond maturities. As the LS modey/reaffer from the
extreme overestimation of short-term bond yields in thetrg CDG model is
originally designed to pull down the short-term yields gsen floating barrier.
However, this ultimately pulls down corporate bond yieldsdll maturities. Our
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empirical study shows that the LS model already underegtisniaond yields on
average, even for short-term bonds, and thus pulling dowrstiort-term bond
yields may not be necessary, except when overestimatioxtrisnee. The CDG
model fails to improve the prediction of short-term bondsaintain its predictive
power for long-term bonds.

5 Conclusion

This paper investigates the systematic bias in the tesfirsgroctural models of
corporate bond pricing using proxies and gives a bias-redlempirical compar-
ison of the Merton, LS, and CDG models. By option propertied simulation,
we show that the sum of the market value of equities and th& balue of li-
abilities is an upwardly biased estimator for the marketigadf a firm’s assets.
When this bias is carried forward to test structural mod#iste is a significant
underestimation of corporate bond yields with structurateis.

Apart from the proxy for firm value, we show that the dividenelgs reported
by CompusStat that is also biased upward leads to overesbimatt asset payout
ratio. If the reported dividend yield and the proxy firm valaee put together
in a barrier-dependent model, then the corporate bonds/felddividend-paying
firms will be overestimated. We give empirical evidence fos tlaim.

Another important contribution of this paper is that it enigally examines the
Merton, LS, and CDG models using maximum likelihood estioratWe find that
the MLE approach improves the performance of the Merton &anlodels, but
not of the CDG model. We document that the LS model outperédaima Merton
model in almost all aspects, especially for short-termgterm, and low rating
bonds. The CDG model performs the worst among the three maakeit suffers
from a lack of relation between the market value of equity tredmarket value
of the firm. Moreover, the CDG model involves too many pararsgtand thus
generates many difficulties in the estimation process.

Based on the empirical evidence, we give several suggedtomhe develop-
ment of structural models in the future. For the testing oictral models, we
suggest that proxies should be chosen with a special cak®id any systematic
bias, and whenever possible, statistical estimation nastisbould be preferred.
For the construction of structural models, we propose thtraimonious model
should be developed that incorporates a soft default baFigthermore, a desir-
able model should clearly specify the relationship betwaerfirm value and the
equity value.
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Appendix

A A proof of the bias of the proxy for firm value in
the LS model

Let V be the true market value of asséts,,,, be the proxy for firm value and
be the maket value of equity. The proxy for firm value thentesdo the equity
and liabilities by

‘/proazy =5+ X.

We view the market value of equity as a DOC option on the ugdeglasset
V with a strike priceX, default barriet//, and rebate?. Thus,

S =DOC(V, X, H,R).

The no arbitrage pricing principle shows that the DOC prieestie greater than
the intrinsic value if the barrier is set to the book valueialbllities, that is,

DOC(V, X,H,R) >V — X, (A.1)

whereH = X. If this is not the case (that is, ¥ — DOC(V, X, X, R) — X > 0),
then an investor can make an arbitrage profit by selling teetag!” to purchase
the DOC option. The remaining cash is put into a bank accduptofit can then
be made by taking two different actions that correspond tofwssible scenarios.

1. Ifthe asset pric& does not breach the barrier levélbefore maturity, then
on the maturity day[®), the investor will exercise the option to purchase the
asset for a value ok so that the investor’s short position in the asset will
be canceled. An arbitrage profit of

[V —DOC(V, X, X)] el — X
is then made at tim@'.

2. If the asset value breaches the barrier leVeht timer < T, then the
investor will receive a rebate ak. The investor will purchase the asset
from the market right away for an amoukitto cancel the short position in
the asset. An arbitrage profit of

[V — DOC(V, X, X)|e"™ — X + R

is then made at time.
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This proves the inequality (A.1), which is a model-indepamicroperty of DOC
options.
A consequence of the inequality is that

DOC(Vyroays X, X, R) > Vyowy — X = S = DOC(V, X, X, R).

As the DOC option is an increasing function of the underlyasget price, the
proxy firm value,V,,..,, is clearly larger than the true valu¥, if the default
barrier is set toX. This shows that the proxy firm value in the study of EHH is an
upwardly biased estimator.

Actually, the inequality (A.1) holds for alH < X, because the DOC op-
tion is a decreasing function of the default barrier. Moespuhe difference
DOC(V, X, H, R) — (V — X)) can be widened by decreasing the valuéiofwvhich
implies that the smaller the default barrier the more sigaift the upward bias
that is induced by the proxy for firm value. Therefore, it ig thost significant
bias in the Merton model.

B Likelihood function of the Merton model

The underlying asset price evolves as the Black-Scholeardigs,
dinV;, = (p — 0®/2)dt + odZ,,

whereV; is the market value of assets at time: is the drift of the business;
is the asset volatility, and; is a standard Wiener process. Under the physical
probability measure, the density functionlofl; is given by

T ) = 1 woxn d L Vi = (= 0?/2)(t — £ )]
§(ofvir) = o2l —t) D { 202(t; —t; 1) } '

The Merton model views the market value of equiitps a standard call option on
the market value of asseitssuch that

S=V-N(d)— Xe ™ N(dy),

where X is the book value of corporate liabilitiesjs the risk-free rate]" is ma-
turity, N(-) is the cumulative distribution function for a standard natrmandom
variable and

_ In(V/X)+ (r+02/2)T

n(V/X) + (r — 0%/2)T
oVT '

d
! oT

and ds =
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As inference is made based on the observable market valusgudfes, we
formulate the log likelihood function gi ando by

L(IM,O') = Zln f(Si\Si,l,,u,a), Sz = S(tz),
1=2

where f(-) denotes the probability density function Sfand S(t;) denotes the
market value of equity at timg. After applying the standard change of variable
technique, we obtain

f(SilSiz1, 1, 0) = g(ilviey, p, o) X [Vi - N(dy)|v=v,] "

Hence, the log-likelihood function reads

L(p,0) = Z{lng(vﬂvi,l) — In[V; - N(di)|v=v].

The MLE is the solution to the following optimisation probie

max L(p,0) st S(t;) =C(,V(t),0), Vi=1,2,--- n.

w,o

C DOC option pricing formula

DOC(V,X,H,R) = VN(a)— Xe TN (a - aﬁ)
— V(H/V)IN(b) + Xe T (H/V)2-2N (b - aﬁ)
+ R(H/V)*'N(c) + R(V/H)N (c - znaﬁ) :
whereV is the market value of firm assets, is the future promised payment,
H is the barrier levelg is the asset volatilityy is the risk-free interest ratd,;
is the time to maturity,R is the rebate paid to the equity holders upon default

(asset value breaches the barrié¥);) is the cumulative distribution function for
a standard normal random variable, and

{ In(V/X)+(r+02/2)T for X > H
0 — =

oVT ,
In(V/H)+(r+02/2)T
T , forX < H,
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In(H2?/VX)+(r+o%/2)T
’ { In(H/V) ?ﬁm)T o
n +(r+o
1 T ; for X < H,
H 2)T 1
oo WHNFCHAIT g v L
oV T o 2

D Pricing formulas of the structural models

D.1 The Merton model

The original Merton model considers a corporate zero-colgumd with a matu-
rity 7" and face valu&X. The model assumes a constant interestirated market
values of asset; follow a geometric Brownian motion, i.e.

dV; = (u — 6)Vidt + oVidWiy, (D.2)

whereyu, § ando is the drift, payout ratio and volatility of market valuesasfsets
respectively andiVy, is a standard Brownian motion.

Assuming no intermediate default, the terminal payoff @ biond is the min-
imum of the face amount of the bond and the market value otassenaturity
Vr. By discounting it under the risk neutral measure, the c@feocbond price is
expressed as a risk-free bond minus a put option on the ymgdssetd” with
a strike price ofX and maturityl’, that is,

BPM(Vy, X, T) = Xe™' —P(Vy, X, T)
Xe "IN (dy) + Voe " N(—dy), (D.3)

where
S In(%/X) + -5+ N7
' o T

As the original Merton model only deals with a zero coupondydgHH pro-
pose the extended Merton model to treat a coupon bearing &smdportfolio
of zero coupon bonds. Default is assumed to occur only at@moppying dates
when the market value of assets is less than a default bdfriedpon default,
bondholders receive a portion of market values of assetsettovery rater.. The
pricing formula of the extended Merton model is found to be

and dy = dy — U\/T.

n—1
BEPM Vo, X,T) = 3" e ™ E? |(¢/D v, 2x) + min(we/2, Vi) v, <i0)]  (D.4)
=1
+ e TTE[(1+ ¢/2) vy sy + min(w(l +¢/2), Vi) vy <xiy]
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wherec is the coupon rate,

E°Uy,>ky] = N(dao(K,1)),
E9v <y min(, ;)] = Voel "N (=di(4, 1)) + 9 [N(da (8, 1)) — N(da(K, )],
 In(Vo/x)+ (r— 6+ 02/2)t
d1 (m,t) = o'\/g 5
do(z,t) = dyi(x,t) — oVt
In formula (D.4), we assume coupon paying dates gt to, - - -, ¢, }, thatt,, =

T, and useN (-) to represent the cumulative distribution function of a dtmd
normal random variable.

D.2 The LS model

For the LS model, asset prices are assumed to follow equ@i@), and interest
ratesr; are assumed to be stochastic with dynamics of

dT’t = (Oé — ﬁrt)dt -+ ndWQt,
or, equivalently,
dT’t = K)(e — Tt)dt —+ ndW2t7 (D5)

wherea, 3, n, k andf are some parameters arid is another standard Brownian
motion process. The underlying asset price and the inteagstare correlated
processes with correlation coefficignt

Under the LS framework, default occurs if the market valuassfets at time
(V;) reaches a threshold valu€, or equivalent, = V;/K reaches one. Hence,
the pricing formula for a corporate zero coupon bond can brilzded as

BP (Lo, 0, T) = D'(ro, T)[1 — wQ(Lg, 0, T)], (D.6)

where

Q(L07T07T7n) = ZQH
i=1

q1 = N(al)v

i—1

q; = N(CLZ) _ZqJN(bU>7 i:2,3,...,n,

j=1
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A —InX — M@GT/n,T)
' ST /n) ’
M@GT/n,T) — M(GT/n,T)

/ST - S(UT/n)

and

M(t,T) =

O‘_PU77_77__U__5)t

B?+ijwmwnmmm—u

2

(
(
b (B L) - o5
<77
(
(

23
S(t) = 2/)_0'7)+Z_22+02)t
2
- 2;02'77 " %) [1 — exp(—/3t)]
,’72
. G@)Lw@@wm

where D'(rq, T is the price of a zero coupon bond with a face value of $1 and
time to maturityZ” under interest rates that follow the Vasicek (1977) modad, a
N (-) is the cumulative density function of a standard normatritistion. Whenn
tends to infinity, the ternd)( Lo, o, T) is the limit of Q(Lo, 79, T, n) and thus we
can calculate the corporate bond price predicted by the L&ino

The pricing formula for a corporate coupon bearing bondrgody the sum of
all of the individual zero coupon bonds, that is,

BP(Ly,r,T) = E D'(ro,t;) - X; - [1 = wQ(Lo, o, )], (D.7)
i—1
X
and X;=Xo=..=X, 1= 707 Xn:X(1+g).
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D.3 The CDG model

The CDG model assumes that the asset price and interesotiw £quations
(D.2) and (D.5), respectively. Moreover, the log-defabheshold §; = In K;)
evolves as

dky = ANInV, — v — ¢(ry — 6) — kyldt, (D.8)

where )\, v and¢ are constant parameters. A default event occurs if the rharke
value of assets hits the threshold value at tirog equivalently, ifl, = &k, —In(V})
is equal to zero. The pricing formula for a corporate zergaowoubond is obtained
as:

BPCCDG(Z(]u To, T) = DI(T07 T)[l - wQ(l(b To, T)]? (Dg)

where D'(ry, T') is the Vasicek (1977) price of a zero coupon bond with a face
value $1 and time to maturity/, andw is the recovery rate.
By discretizing the time interval [@}], the CDG shows that

nr nr

Q<l07 To, T) = Z Z q('r% tj)a

=1 i=1

q(ri,t1) = ArU(ry,ty) i=1,2,...,n,,

Jj—1 n,
drt) — Ar B0t~ S gl t) m,mru,tv)]
v=1 u=1
=12, nr andj =23, ... np
t|l
) — sty (At DY

2
)
E(T t|l0, 7’0,
M
2

(r, t|ls = 0,75, 5)
t S = 7t 37 N )
w(rt’ |T 8) Tt ‘T < (Tt7t|l =0 yTsy S )

I covT[lt, A -
M(Tt,t”S,TS,S) - E [l] VarT[Tt] ( E [Tt])
CoV [lt,rt]z
X (re, tlls, 75, ) \/vars A vart[r]
where
S+ 2 1
) = ST —vre-r(540),
B _ ﬂ
K /ﬂ; )
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2
S N —k(t—u —u
Eg[lt] = et (14 \o) (Tu + i 9) o rl(t )B((;—/@))

2
1po n —r(T—t) p(t—u)

2
Ui —k{4 = —2k(t—u —u
+ (1 Ad)5 e (T—t) ,—2n(t—u) g(t—u)

(A—k)
2
npo | 1@ . »
* (T“l (0) = (1+X9) <9—?))B§t g
2 2
ET[rt] = Tue—fe(t—u)+ 0/{_77_ B(t_u)*Fn—e_“(T_t)Bg_u)’
u K:2 P - -
1+>\¢)77 ? t—u
T = A4\ po—w)
var, [1;] py— {t
2
2, ((L+Ad)n po (14 Ay )
e +< A—K \ — 2\
po(l+Ag)n 1+ 207\ 2| Lo
v <ﬁ ook ) | Poeer
varl[r] = n*B{,
1+)\(b 7]2 —u 1+)\¢ ,’72 Y
cofllor) = TR (o (2) ) B,

Herein, N (-) is the cumulative distribution function of a standard ndrraadom
variable, andr(ry, t|rs, s) is the well-known transition density for a one-factor
Markovian Gaussian interest-rate process.
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Figure 1: Simulation result of the Merton model. In all of fiwures, ‘0’ indicates
the percentage error in the yields using the MLE and ‘X’ iatks the percentage
error using the proxy. Figure 2a plots the results for alldsrigures 2b, 2c, and
2d plot the results by high, medium, and low credit qualjtrespectively.
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Table 1: Simulation results for the Merton model

MLE approach Proxy approach
% error % error % error % error % error % error
in prices inyields inspreads inprices inyields inspreads
Characteristics  Mean Mean Mean Mean Mean Mean
(S.D) (S.D.) (S.D.) (S.D) (S.D.) (S.D)
Panel A: Different levels of coupon rate:
c=0% 0.06%  -0.10% -4.14% 1.37%  -2.53%  -93.22%
(0.10%) (0.18%) (3.08%) (2.04%) (5.48%) (12.81%)
c=8% 0.03%  -0.09% -4.09% 0.75%  -2.35%  -92.28%
(0.05%) (0.18%) (3.96%) (1.26%) (5.64%) (14.64%)
Panel B: Different levels of total liabilities:
X=03 0.00% -0.01% -2.92% 0.15%  -0.22% -86.89%
(0.01%) (0.01%) (3.84%) (0.31%) (0.48%) (20.98%)
X =05 0.03%  -0.05% -4.08% 0.77%  -1.64% -94.68%
(0.04%) (0.07%) (2.56%) (1.05%) (3.08%) (7.12%)
X =07 0.10%  -0.22% -5.35% 2.25%  -5.45% -96.69%
(0.11%) (0.26%) (3.69%) (2.33%) (8.28%) (4.88%)
Panel C: Different levels of time to maturity:
T=2 0.03%  -0.15% -4.50% 0.70% -4.21% -93.77%
(0.05%) (0.28%) (5.08%) (1.44%) (8.95%) (22.86%)
T=5 0.05% -0.11% -3.86% 1.18%  -3.06% -95.34%
(0.07%) (0.18%) (2.66%) (1.86%) (5.36%) (5.70%)
T=10 0.05%  -0.07% -3.83% 1.26%  -1.71% -91.83%
(0.09%) (0.11%) (2.71%) (1.84%) (2.69%) (8.66%)
T=20 0.06%  -0.04% -4.27% 1.10%  -0.77%  -90.08%
(0.10%) (0.06%) (3.15%) (1.69%) (1.12%) (10.67%)

A percentage error is calculated as the estimated valuestiigurue value divided by the

true value.

39



Table 2: Simulation results for the LS model

MLE approach Proxy approach
% error % error % error % error % error % error
in prices inyields inspreads inprices inyields inspreads
Characteristics  Mean Mean Mean Mean Mean Mean
(S.D) (S.D.) (S.D.) (S.D.) (S.D) (S.D)
Panel A: Different levels of coupon rate:
c=0% 0.07%  -0.09% -0.73% 5.46% -5.95% -51.57%
(0.13%) (0.21%) (2.76%) (7.54%) (9.79%) (39.53%)
c=8% 0.06%  -0.10% -0.63% 4.32% -6.58% -55.01%
(0.11%) (0.22%) (0.93%) (6.90%) (10.46%) (39.50%)
Panel B: Different levels of total liabilities:
X=03 0.01% -0.01% -0.88% 2.29% -2.53% -69.45%
(0.02%) (0.02%) (3.29%) (2.76%) (2.65%) (25.52%)
X=05 0.04%  -0.06% -0.50% 6.24% -8.84% -64.69%
(0.05%) (0.08%) (0.90%) (5.04%) (7.57%) (25.77%)
X =07 0.13%  -0.21% -0.67% 6.14% -7.42% -25.74%
(0.18%) (0.33%) (1.03%) (10.72%) (14.91%) (47.22%)
Panel C: Different levels of time to maturity:
T=2 0.04%  -0.15% -1.31% 2.88% -8.19% -74.88%
(0.10%) (0.34%) (3.91%) (6.90%) (15.49%) (45.48%)
T=5 0.06% -0.11% -0.69% 4.37% -7.06% -61.68%
(0.13%) (0.21%) (0.83%)  (7.38%) (9.99%) (39.11%)
T=10 0.07%  -0.07% -0.44% 577% -5.64% -45.96%
(0.13%) (0.13%) (0.56%) (7.34%) (6.51%) (31.79%)
T=20 0.07%  -0.05% -0.28% 6.53% -4.16% -30.65%
(0.12%) (0.09%) (0.40%) (6.87%) (4.56%) (23.64%)
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Table 3: Summary statistics of the corporate bond sample

Panel A
Characteristics Mean S.D. Minimum Median Maximum
Time to maturity {7) 9.91 8.03 1.04 7.75 49.95
Coupon rated) 8.20 1.52 0 8.5 15
Yield-to-maturity () 7.68 1.54 3.94 7.48 22.49
Moody'’s ratings 7.24 2.73 2 7 24
S&P ratings 6.99 2.67 2 7 16
Market capitalisation (MV) 7450.66 10733.12 230.55  3428.4 95983.1
Total liabilities (X) 5151.77 10728.75 113.6 2324.49 150424.59
Panel B
Year Number T c Yy Moody's  S&P MV X
of bonds ratings ratings

1986 20 11.47 9.75 8.17 6.95 6.65  4479.68 4622.74
1987 29 10.46 9.18 9.55 5.93 5.93 6309.20 5575.82
1988 a7 8.08 9.07 10.02 6.45 6.26 5286.23 9584.63
1989 52 848 9.11 8.93 6.69 6.46 6355.56 8661.61
1990 49 9.26 9.16 9.14 6.31 6.27 8371.26 10086.37
1991 68 10.89 891 7.47 6.46 6.25 8573.71 5124.63
1992 77 10.19 8.43 7.38 7.25 6.77 6892.26 4050.76
1993 94 10.21 7.67 6.41 7.30 6.90 7572.97 4120.06
1994 99 962 7.75 8.72 7.55 7.17 7752.24 4518.75
1995 138 10.02 7.63 6.40 7.66 7.43 8107.86 4203.99
1996 134 10.23 7.55 7.05 8.07 7.95 7754.13 3231.63

*For the Moody's rating, 1 stands for Aaa+, 2 stands for Aaal sm on. For the
S&P ratings, 1 stands for AAA+, 2 stands for AAA, and so on. Both rating systems,
24 stands for NR, which means that the bond is not rated.
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Table 4. Overall empirical results for the Merton, LS, and@model

Method of ~ Mean percentage Mean percentage Mean yield
estimation error in price error in yield difference

(Standard deviation) (Standard deviation) (Standardadievi)
Panel A: Empirical results of different models using the MLE approach:

Merton 2.37% -1.82% -0.03%
(8.78%) (35.34%) (3.21%)
LS 3.57% -4.38% -0.28%
(6.15%) (14.43%) (1.29%)
CDG 5.71% -12.19% -0.98%
(7.05%) (17.81%) (1.68%)
Panel B: Empirical results of different models using the proxy approach:
Merton 7.22% -15.17% -1.26%
(6.12%) (10.45%) (1.07%)
LS 6.19% -9.45% -0.73%
(5.53%) (8.69%) (0.92%)
CDG 5.40% -10.83% -0.87%
(8.22%) (21.53%) (2.06%)

A percentage error in the price is calculated as the model price minus the market
price divided by the market price. Smilar calculations apply to other quantities. The
yield difference is obtained by subtracting the market yield from the model yeild.
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Table 5: Empirical results of the LS model when the defaultibais set to the

book value of liabilities

MLE approach Proxy approach
% error % error Yield % error % error Yield
inprices inyields differences inprices inyields diffeces
Characteristics Mean Mean Mean Mean Mean Mean
(S.D) (S.D) (S.D) (S.D.) (S.D) (S.D)
Panel A: Empirical results with different ratings:
High ratings -3.71% 13.76% 1.13% 1.68% -0.41% 0.01%
(11.41%) (38.11%) (2.89%) (6.54%) (17.27%) (1.29%)
Medium ratings -3.74% 15.75% 1.41% 2.39% -1.91% -0.05%
(11.01%) (37.38%) (3.38%) (7.00%) (16.71%) (1.49%)
Low ratings -6.84% 42.66% 4.22% 8.49% -10.38% -1.02%
(15.58%) (79.12%)  (7.79%) (12.73%) (33.01%) (3.64%)
Panel B: Empirical results with different maturities:
Short maturity -2.13% 19.33% 1.72% 2.36% -3.90% -0.23%
(10.84%) (61.39%) (5.16%) (4.61%) (23.84%) (1.94%)
Medium maturity  -3.90% 14.31% 1.18% 2.13% -0.46% -0.01%
(11.03%) (30.66%)  (2.49%) (7.47%) (16.07%) (1.41%)
Long maturity -6.42% 13.12% 1.16% 1.91% 1.01% 0.11%
(13.41%) (22.40%)  (1.95%) (9.41%) (13.00%) (1.10%)
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Table 6: Empirical results of the Merton, LS, and CDG modglsdting

MLE approach

Proxy approach:

% error % error Yield % error % error Yield
inprices inyields differences inprices inyields diffeces
Characteristics Mean Mean Mean Mean Mean Mean
(S.D.) (S.D) (S.D.) (s.D.) (s.D)) (s.D.)
Panel A: Empirical results for the Merton model:
High rating 2.69% -3.83% -0.27% 6.42% -13.38% -1.07%
(8.12%) (31.37%) (2.45%) (4.90%)  (9.56%) (0.76%)
Medium rating  3.37% -4.69% -0.22% 7.86% -17.11% -1.36%
(8.24%) (27.94%) (2.67%) (4.93%) (7.53%) (0.69%)
Low rating -6.43% 40.13% 4.32% 16.71%  -34.26% -3.58%
(14.38%) (73.82%) (8.39%) (14.04%) (12.95%) (2.62%)
Panel B: Empirical results for the LS model:
High rating 3.11% -3.62% -0.22% 5.34% -7.61% -0.56%
(5.66%) (12.87%) (1.06%) (4.05%) (6.63%) (0.47%)
Mediumrating  4.24% -6.04% -0.36% 6.95% -11.53% -0.84%
(5.76%) (13.56%) (1.20%) (4.50%)  (7.54%) (0.63%)
Low rating 7.90% -9.23% -0.86% 15.94%  -28.79% -2.88%
(11.17%) (30.51%) (3.24%) (13.54%) (13.82%) (2.65%)
Panel C: Empirical results for the CDG model:
High rating 5.19% -11.33% -0.90% 4.68% -9.73% -0.77%
(5.57%) (13.95%) (1.11%) (6.89%) (16.11%) (1.33%)
Medium rating  6.23% -14.60% -1.14% 5.98% -12.87% -0.98%
(5.18%) (11.18%)  (0.95%) (7.62%) (21.03%) (1.85%)
Low rating 11.42%  -15.54% -1.49% 13.89%  -19.30% -2.03%
(19.94%) (54.58%) (5.91%) (18.36%) (60.18%) (6.69%)
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Table 7: Empirical results of the Merton, LS, and CDG modglsiaturity

MLE approach Proxy approach
% error % error Yield % error % error Yield
in prices inyields differences inprices inyields diffeces

Characteristics Mean Mean Mean Mean Mean Mean
(s.D.) (s.D.) (S.D) (S.D) (S.D) (S.D)

Panel A: Empirical results for the Merton model:

Short maturity -1.24% 6.78% 0.80% 3.76%  -18.18% -1.52%
(9.84%) (59.09%) (5.40%) (2.85%) (13.86%) (1.31%)

Medium maturity  2.63% -4.83% -0.32% 7.23%  -14.18% -1.16%
(7.00%) (16.78%) (1.44%) (6.03%) (8.36%) (1.02%)

Long maturity 7.16% -7.34% -0.56% 12.41% -13.07% -1.09%
(8.65%) (10.94%)  (0.97%)  (6.29%) (7.92%) (0.66%)

Panel B: Empirical results for the LS model:

Short maturity 2.70% -5.88% -0.35% 3.89% -10.62% -0.79%
(4.05%) (18.63%) (1.64%) (2.77%) (9.63%) (0.98%)

Medium maturity ~ 4.00% -4.66% -0.32% 6.58% -9.66% -0.75%
(5.97%) (12.06%) (1.11%) (5.96%) (8.54%) (0.98%)

Long maturity 3.85% -1.44% -0.07% 8.67% -7.17% -0.58%
(8.63%) (12.02%) (1.04%) (6.22%) (7.04%) (0.58%)

Panel C: Empirical results for the CDG model:

Short maturity 2.98%  -14.62% -1.13% 2.60% -11.79% -0.92%
(5.25%) (24.77%) (2.43%) (6.11%) (31.28%) (3.07%)

Medium maturity 6.06%  -11.81% -0.96% 5.83% -11.23% -0.91%
(7.24%) (15.13%) (1.35%) (8.10%) (15.87%) (1.49%)

Long maturity 8.93% -9.49% -0.79% 8.53% -8.41% -0.71%
(7.45%) (8.78%) (0.77%) (9.83%) (14.49%) (1.24%)
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Figure 2: Simulation result of the LS model. In all of the figsy ‘0’ indicates
the percentage error in the yields using the MLE and ‘X’ iatks the percentage
error using the proxy. Figure 2a plots the results for alldsrigures 2b, 2c, and
2d plot the results by high, medium, and low credit qualjtrespectively.
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Figure 3: Empirical results of the Merton model. Figure 3avghithe errors in the
yields using the MLE approach and Figure 3b shows the errgirgjuthe proxy

approach.
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Figure 4: Empirical results of the LS model. Figure 4a shdveqarediction errors
in the yields using the MLE approach with the default bagriset to the total
liabilities, and Figure 4b shows those with the default ieasrset to the recovery
value. Figure 4c shows the prediction errors using the pepgroach with the
default barrier set to the recovery value.
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Figure 5: Empirical results of the CDG model. Figure 5a shtiveserrors in the
yields using the MLE approach and Figure 5b shows the errsirgjuthe proxy

approach.
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