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Abstract

Cramér type moderate deviation theorems quantify the accuracy of the relative
error of the normal approximation and provide theoretical justifications for many
commonly used methods in statistics. In this paper, we develop a new randomized
concentration inequality and establish a Cramér type moderate deviation theorem
for general self-normalized processes which include many well-known Studentized
nonlinear statistics. In particular, a sharp moderate deviation theorem under optimal

moment conditions is established for Studentized U-statistics.

Keywords: Moderate deviation, relative error, self-normalized processes, Studentized

statistics, U-statistics, nonlinear statistics.

1 Introduction

Let T,, be a sequence of random variables and assume that 7T, converges to Z in distribution.
The problem we are interested in is to calculate the tail probability of T,,, P(T,, > x), where
x may also depend on n and can go to infinity. Because the true tail probability of T,, is
typically unknown, it is common practice to use the tail probability of Z to estimate that
of T,,. A natural question is how accurate the approximation is? There are two major
approaches for measuring the approximation error. One approach is to study the absolute

error via Berry-Esseen type bounds or Edgeworth expansions. The other is to estimate
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the relative error of the tail probability of 7, against the tail probability of the limiting

distribution; that is,
P(T, > z)

P(Z>z)’

A typical result in this direction is the so-called Cramér type moderate deviation. The focus

xz > 0.

of this paper is to find the largest possible a,, (a, — 00) so that

P(T, > x)

FZ> o) =1+o0(1)

holds uniformly for 0 < z < a,,.
The moderate deviation, and other noteworthy limiting properties for self-normalized
sums are now well-understood. More specifically, let X, X, ..., X,, be independent and

identically distributed (i.i.d.) non-degenerate real-valued random variables with zero means,

and let . .
Sp=>_X; and V=) X;
=1 i=1

be, respectively, the partial sum and the partial quadratic sum. The corresponding self-
normalized sum is given by S,,/V;,. The study of the asymptotic behavior of self-normalized
sums has a long history. Here, we refer to Logan, Mallows, Rice and Shepp (1973) for weak
convergence and to Griffin and Kuelbs (1989, 1991) for the law of the iterated logarithms
when X is in the domain of attraction of a normal or stable law. Bentkus and Gotze (1996)
derived the optimal Berry-Esseen bound, and Giné, Gotze and Mason (1997) proved that
S,/ Vy is asymptotically normal if and only if X belongs to the domain of attraction of a
normal law. Under the same necessary and sufficient conditions, Csorgd, Szyszkowicz and Wang
(2003) proved a self-normalized analogue of the weak invariance principle. It should be
noted that all of these limiting properties also hold for the standardized sums. However,
in contrast to the large deviation asymptotics for the standardized sums, which require a
finite moment generating function of X, Shao (1997) proved a self-normalized large de-
viation for S, /V,, without any moment assumptions. Moreover, Shao (1999) established
a self-normalized Cramér type moderate deviation theorem under a finite third moment;
that is, if E|X|® < oo, then

P(S,./V, > x)

1 — () — 1 holds uniformly for 0 < z < o(n*/%), (1.1)

where ®(-) denotes the standard normal distribution function. Result (1.1) was fur-
ther extended to independent (not necessarily identically distributed) random variables

by Jing, Shao and Wang (2003) under a Lindeberg type condition. In particular, for
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independent random variables with EX; = 0 and E|X;|> < oo, the general result in
Jing, Shao and Wang (2003) gives

P(S,./V, > x)
1—®(x)

5 Do BIXG

=1+0(1)(1+x) 5 EXZ)2

(1.2)

for 0 < = < (Y0, EX)V2/(S0 E|X, )12,

Over the past two decades, there has been significant progress in the development of the
self-normalized limit theory. For a systematic presentation of the general self-normalized
limit theory and its statistical applications, we refer to de la Pena, Lai and Shao (2009).

The main purpose of this paper is to extend (1.2) to more general self-normalized
processes, including many commonly used Studentized statistics, in particular, Student’s ¢-
statistic and Studentized U-statistics. Notice that the proof in Jing, Shao and Wang (2003)
is lengthy and complicated, and their method is difficult to adopt for general self-normalized
processes. The proof in this paper is based on a new randomized concentration inequality
and the conjugated method, which opens a new approach to studying self-normalized limit
theorems.

The rest of this paper is organized as follows. The general result is presented in Section 2.
To illustrate the sharpness of the general result, a result similar to (1.1) and (1.2) is obtained
for Studentized U-statistics in Section 3. Applications to other Studentized statistics will
be discussed in our future work. To establish the general Cramér type moderation theorem,
a novel randomized concentration inequality is proved in Section 4. The proofs of the main
results and key technical lemmas are given in Sections 5 and 6. Other technical proofs are

provided in the Appendix.

2 Moderate deviations for self-normalized processes

Our research on self-normalized processes is motivated by Studentized nonlinear statistics.
Nonlinear statistics are the building blocks in various statistical inference problems. It is
known that many of these statistics can be written as a partial sum plus a negligible term.
Typical examples include U-statistics, multi-sample U-statistics, L-statistics, random sums
and functions of nonlinear statistics. We refer to Chen and Shao (2007) for a unified
approach to uniform and non-uniform Berry-Esseen bounds for standardized nonlinear
statistics.

Assume that the nonlinear process of interest can be decomposed as a standardized



partial sum of independent random variables plus a remainder; that is,

1 n
(e o)
O\ ©
=1
where &4, ..., &, are independent random variables satisfying
B =0, i=1,...,n, > E&=o"
i=1

and Dy, = D1,(&,...,&,) is a measurable function of {&}",. Because o is typically
unknown, a self-normalized process

is more commonly used in practice, where ¢ is an estimator of 0. Assume that ¢ can be

G = {(g;&?)(l + Dzn)}m,

where Dy, is a measurable function of {&;},. Without loss of generality and for the sake

written as

of convenience, we assume ¢ = 1. Thus, under the assumption

B =0, i=1,...,n, Y E&=1, (2.1)
i=1
we can rewrite the self-normalized process T,, as
n D n
7= WntD (2.2)

Vn(l + D2n)1/2’

where . . 12
Wo=> & V= (Z&?) :
i=1 i=1

Essentially, this formulation (2.2) states that, for a nonlinear process that be can written
as a linear process plus a negligible remainder, it is natural to expect that the corresponding
normalizing term is dominated by a quadratic process. To ensure that T,, is well-defined,
it is assumed implicitly in (2.2) that the random variable Dy, is such that 1 4+ Dy, > 0.
Examples satisfying (2.2) include the t-statistic, Studentized U-statistics and L-statistics.
See Wang, Jing and Zhao (2000) and the references therein for more details.



In this section, we establish a general Cramér type moderate deviation theorem for a
self-normalized process T, in the form of (2.2). We start by introducing some of the basic

notation that is frequently used throughout this paper. For 1 <i <n and x > 1, write

=1

Lo =Eexp(aW, — 2°V;2/2) = [[Eexp(&in — £,/2). (2.4)
i=1

Let Dﬁz and Dé’g, for each 1 <4 < n, be arbitrary measurable functions of {£;}}7_, ;;, such
that {Dg, ngf} and &; are independent. Set also for z > 1 that

Ry = I [E{(¢]D1al + 27| Dan) eXia6i61/2) (2.5)
+ > E{ min(|€], 1) (| Din = DS + 2l Dy, — DY) eZmiGim€h/2} |
=1

Here, and in the sequel, we use » >, , = > "7, ,, for brevity.

Now we are ready to present the main results.

Theorem 2.1. Let T,, be defined in (2.2) under condition (2.1). Then there is an absolute
constant C' > 1 such that

B(T, > ) > {1 - ®(a)} exp{O(1) Ly, } (1 — C R (2.6
and

P(T, > x) <{1—®(x)} eXp{O(l)Ln,x}(l + C'Rn@)

+ P(z|D1n| > V,/4) + P(2°| Dy | > 1/4) (2.7)
for all x > 1 satisfying
max d; , < 1 (2.8)
and
Ln. <2%/C, (2.9)

where |O(1)] < C.



Remark 2.1. The quantity L, , in (2.3) is essentially the same as the factor A,, , appeared
in Jing, Shao and Wang (2003), which is the leading term that describes the accuracy of
the relative normal approximation error. To deal with the self-normalized nonlinear process
T, first we need to “linearize” it in a proper way, although at the cost of introducing some
complex perturbation terms. The linearized term is xW, — x?V,?/2, and its exponential
moment is denoted by I, , as in (2.4). A randomized concentration inequality is therefore
developed (see Section 4) to cope with these random perturbations which leads to the
quantity R, , given in (2.5). Similar quantities also appear in the Berry-Esseen bounds for

nonlinear statistics. See, e.g. Theorems 2.1 and 2.2 in Chen and Shao (2007).

Theorem 2.1 provides the upper and lower bounds of the relative errors for x > 1. To
cover the case of 0 < x < 1, we present a rough estimate of the absolute error in the next
theorem, and refer to Shao, Zhang and Zhou (2014) for the general Berry-Esseen bounds

for self-normalized processes.

Theorem 2.2. There exists an absolute constant C' > 1 such that for all x > 0,
IP(T, < z) — ®(z)| < C Ry, (2.10)

where

%

Ry = Lyyte + E|Dyy| 4 2E[ Dy (2.11)
i=1

for Ly 1yq as in (2.3).

The proof of Theorem 2.2 is deferred to the Appendix. In particular, when 0 < z <1,
the quantity L,, 14+, can be bounded by a constant multiplying

Y EEI(G] > 1)+ ) EIGPI(E] < 1).
i=1 i=1

Remark 2.2.

1. When Dy, = Dy, = 0, T}, reduces to the self-normalized sum of independent random
variables, and thus Theorems 2.1 and 2.2 together immediately imply the main result
in Jing, Shao and Wang (2003). The proof therein, however, is lengthy and fairly
complicated, especially the proof of Proposition 5.4, and can hardly be applied to
prove the general result of Theorem 2.1. The proof of our Theorem 2.1 is shorter and

more transparent.



2. Dy, and Dy, in the definitions of R,, , and }v%nx can be replaced by any non-negative

random variables Ds,, and Dy, respectively, provided that |Dy,| < Ds,, |Daon| < Dyp.

3. Condition (2.1) implies that &; actually depends on both n and i; that is, & denotes

&ni, which is an array of independent random variables.

4. The factor 1/4 on the right side of (2.7) has no particular meaning. It can be replaced

by a smaller positive constant, although at the cost of increasing the constant C'.

3 Studentized U-statistics

As a prototypical example of the self-normalized processes given in (2.2), we are particularly
interested in Studentized U-statistics. In this section, we apply Theorems 2.1 and 2.2 to
Studentized U-statistics and obtain a sharp Cramér moderate deviation under optimal
moment conditions.

Let X1, X5,..., X, be a sequence of i.i.d. random variables and let h : R™ — R be a
symmetric Borel measurable function of m variables, where 2 < m < n/2 is fixed. The
Hoeffding’s U-statistic with a kernel h of degree m is defined as (Hoeffding, 1948)

Up = % Z h(Xil""7Xi7rL)>

(m) 1<i1 < .. <im<n

which is an unbiased estimate of § = Eh(Xq,..., X,,). Let
hi(z) = E{h(X1,Xo, ..., X)) | X1 =2}, 2 €R

and
o? = Var{h(X1)}, of = Var{h(X1, Xo,..., X))} (3.1)

Assume 0 < 0% < oo, then the standardized non-degenerate U-statistic is given by

Z, = Y0, — ).

mao

The U-statistic is a basic statistic and its asymptotic properties have been extensively
studied in the literature. We refer to Koroljuk and Borovskich (1994) for a systematic
presentation of the theory of U-statistics. For uniform Berry-Esseen bounds, see, for ex-
ample, Filippova (1962), Grams and Serfling (1973), Bickel (1974), Chan and Wierman
(1977), Callaert and Janssen (1978), Serfling (1980), van Zwet (1984), Friedrich (1989),
Alberink and Bentkus (2001), Alberink and Bentkus (2002), Wang and Weber (2006) and



Chen and Shao (2007). We also refer to Eichelsbacher and Lowe (1995), Keener, Robinson and Weber
(1998) and Borovskikh and Weber (2003a,b) for large and moderate deviation asymptotics.
Because ¢ is usually unknown, we are interested in the following Studentized U-statistic
(Arvensen, 1969), which is widely used in practice:
7, = Y (1, - ),

m Sy

where s? denotes the leave-one-out Jackknife estimator of o2 given by

n

2= D SN G v with (3.2)

(n—m)* <

1
¢ = Ty > WXy X, X, )

1<l < <lp,_1<n
ijéi,j:l,m,mfl

In contrast to the standardized U-statistics, few optimal limit theorems are available for
Studentized U-statistics in the literature. A uniform Berry-Esseen bound for Studentized
U-statistics was proved in Wang, Jing and Zhao (2000) for m = 2 and E|h(X1, X5)]? < cc.
However, a finite third moment of h(X;, X5) may not be an optimal condition. Partial
results on Cramér type moderate deviation were obtained in Vandemaele and Veraverbeke
(1985), Wang (1998) and Lai, Shao and Wang (2011).

As a direct but non-trivial consequence of Theorems 2.1 and 2.2, we establish the

following sharp Cramér type moderate deviation theorem for the Studentized U-statistic T},.
Theorem 3.1. Let 2 < p < 3 and assume
1
o, = (Bl (X)) — 6]P) " < o0.

Suppose that there are constants cg > 1 and 7 > 0 such that
(h(.ﬁl]l, e ,Zl,’m) — 9)2 S Co{T 0'2 + Z (hl(.l’l) — ‘9)2} (33)
i=1

Then there exists a constant C' > 1 independent of n such that

%@—Tg) =1+ 0(1){ (%)p(i;ﬂp + (Vam + on/0) s 3;;) } (3.4)

holds uniformly for
0<z<C'min{(c/o,)n'*" (n/a,)"°},
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where |O(1)| < C and a,, = max{coT, co + m}. In particular,

P(T, > z)

- o0) — (3.5)

holds uniformly in x € [0, 0(n*/*71/7)).

It is easy to verify that condition (3.3) is satisfied for the t-statistic (h(zq,x2) =
(z1 4 x9)/2 with ¢ = 2 and 7 = 0), sample variance (h(x1,z9) = (x1 — 12)%/2, ¢o = 10,
7 = 0?/0?), Gini’s mean difference (h(z1,z2) = |21 — 22|, co = 8, 7 = 67 /%) and one-sample
Wilcoxon’s statistic (h(zy,z2) = 1{x1 + 23 < 0}, ¢g = 1, 7 = 1/0?). Although it may be
interesting to investigate whether condition (3.3) can be weakened, it seems that it is im-
possible to remove condition (3.3) completely. We also note that result (3.5) was earlier
proved in Lai, Shao and Wang (2011) for m = 2. However, the approach used therein can
hardly be extended to the case m > 3.

4 A randomized concentration inequality

To prove Theorem 2.1, we first develop a randomized concentration inequality via Stein’s
method. Stein’s method (Stein, 1986) is a powerful tool in the normal and non-normal ap-
proximation of both independent and dependent variables, and the concentration inequality
is a useful approach in Stein’s method. We refer to Chen, Goldstein and Shao (2010) for
systematic coverage of the method and recent developments in both theory and applica-
tions and to Chen and Shao (2007) for uniform and non-uniform Berry-Esseen bounds for
nonlinear statistics using the concentration inequality approach.

Let &, ...,&, be independent random variables such that
B =0 fori=12....n and Y E&=1.
i=1

Let N .
w=>g Vi=> ¢ (4.1)
i=1 i=1

and let Ay = A1(&,...,&) and Ay = Ay(&y,...,&,) be two measurable functions of

&1, ..., &, Moreover, set

Bo=) EEI(&>1),  Bs=) El&GPI(l& <1).
i=1 i=1



Theorem 4.1. For each 1 <1i <mn, let Agi) and Ag) be random wvariables such that & and
(Agi), Ag), W —&;) are independent. Then
n 2 '
P(Ay < W < Ag) S17(Ba+ Bs) + 5E[A, — A +2) Y Elg(A; — AP (42)
i=1 j=1
We note that a similar result was obtained by Chen and Shao (2007) with E|W (A, —
Ay)| instead of E|Ay — Aq| in (4.2). However, using the term E|W (A, — Aq)| will not yield
the sharp bound in (3.4) when Theorem 2.1 is applied to Studentized U-statistics. This

provides our main motivation for developing the new concentration inequality (4.2).

Proof of Theorem J.1. Assume without loss of generality that A; < Ajy. The proof is

based on Stein’s method. For every x € R, let f.(w) be the solution to Stein’s equation

folw) = wfo(w) = I(w < z) — (x), (4.3)
which is given by
B om e 2 & (w){1 — d(z)}, w <z,
falw) = { 27 /2 d(2){1 — d(w)}, w > z. (44)

Set foy = fo — f, for any z,y € R, § = (B> + B3)/2 and
A=A =0, Dos=00+0, A =AY -5 A=A +3.

Noting that & and (Agi),Ag),W(i) =W — fi) are independent for 1 < i < mn and
E¢ = 0, we have

E{WfA2'6’A1'6(W)} - ZE{&fA2,67A1,5(W)}
i=1
- ZE[&{JCAQ,&,AM(W) — fA?ﬁvAl,&(W(i))}}
i=1

3 BIE o0V ~ gy V)]

= H1—|—H2. (45)
By (4.4),
0 —e(w*=)/2 (1), w <,
_fib(w) = 2_22)/9
O QD2 pw)),  wsa
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Clearly, sup, ,, |2 f»(w)| <1 and it follows that

| <D ElgG(A; - AV (4.6)

i=1 j=1

As for Hy, let ki(t) = &{I(=& <t < 0) — I(0 < t < =&} satisfying k;(t) > 0 and
Jo ki) dt = €2. Observe by (4.3) that

Ed Fastns W) = fagsn,, (W)}
~& [ 5 Fhgsnn s (W + )
_ /R P sn (W 4 8 J(t) dt
= [0V ) s, OV 4 0 )
+ E{D(A5) — B(Ags)} + A (A < W 41 < Ngy) ky(t) di.

Adding up over 1 < i < n gives us

ZE/ (W 1) fan y.n0 s (W + 1) i(t) dt (4.7)

FE[VH(A L) — B(Ags)) Z / H(Avs < W 4t < Ag) hu(t) dt
Z:H11+H12+H13

for V2 given in (4.1). Following the proof of (10.59)—(10.61) in Chen, Goldstein and Shao
(2010), (or see (5.6)—(5.8) in Chen and Shao (2007)), we have

Hiz > (1/2)P(Ar < W < Ay) =6, (4.8)

where § = (2 + (3)/2. Assume that 6 < 1/8. Otherwise, (4.2) is trivial. To finish the
proof of (4.2), in view of (4.5), (4.6), (4.7) and (4.8), it suffices to show that

|Hi2| < 0.6 E|Ay — Ay + By + 0.5 53 (4.9)

and
E{W faysn.,(W)} = Hiy < LT5E[Ay — Ay] + 72 + 6s. (4.10)

Next we prove (4.9) and (4.10), starting with (4.9).
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Proof of (4.9). Recalling that A; < Ay and > i | E&? = 1. Let & = &1(]&] < 1), we have
|Hyo| = E[VZ{P(As) — (A1) }]
< Y- EEI(l6] > 1)+ | {8(8) - ®(A)} Y €1(8l < 1)
i=1 =1

n

= 6+ E[{®(Ae) — ®(A))}] ) B +E {{®<A2> — (A} (& - Eéﬁ)}

1 1 noo B
< By + ——E|Ay — Ay| +E{ min 1, —|Ay, — A § 2 _ g2 }
< h Vo A2 = A4 {mm( m' ? 1‘) p (&~ E&)
1 1 1 2 " 2
< Bo+—FE|Ay — Ay + =Emin | 1, —]Ay — Ay ] +=E § .2—1@.2}
< B T | Ay 1 5 mm( \/E| 2 1|) 5 {iZI (fz fz)
1 1 1
< By 4+ ——F|Ay — Ay| + ——FE|Ay — Ay| + =
<P \/%'2 ! 2@'2 i+ 36

< 0.6E[Ay — Ay| + B2 + 0.5 5,

as desired.

Proof of (4.10). Observe that
E{W fay5005(W)} = Hiy = E{W fa,, a,,(W)(1 = V?)}
+ i E/ (W fagsn0s (W) — (W + ) fa, ., (W + 1)} ki(t) dt
i=1
= Hyy + Has. (4.11)

Recall that sup, | f,(w)| < 1. This, together with the following basic properties of
fz(w) (see, e.g. Lemma 2.3 in Chen, Goldstein and Shao (2010))

lwfe(w)] <1, [fo(w)] <1, (4.12)

lwfe(w) — (w+ 1) fo(w + )| < min {1, (Jw] + v2r/4) |t} (4.13)
and | £, (w)| < [& — y], yields

n

Hay — E[wm“,h,g(m SO{EESI(E] > 1) - £1(&] > 1))

i=1

n

+ E{WfAz,a,Al,(s(W) D (B - €7) }

i=1

<206, +2E{I(|A2 — Aq| > 1)‘ Z (E&? —&7) }
=1

12



n

n E{WfAz,s,A1,5<w>f<|A2 A<D (B - EE)}
=1
< 26y + E|Ay — Aq] + 55
+B{ W15+ | - A8 - 3 <Y (867 - €2)
=1

<26, + E|Ag — Ay| + B + 0.5E{(26 + | A — A1])°1(|1 A — A < 1)}

T 0.5E[W2{ S (B2 ) }2]

i=1
< 2By + E|Ay — Ay] 4 B3+ 26 + 0.75E| Ay — Ay| + 203
<2125 By + 3.125 B3+ LTS E|Ag — Ay, (4.14)

where we determine that 6 < 1/8,

n 2 n 2
E{ Z (522 - ng)} <fs and E{W Z (Eglz - 512)} < 4p3
i=1

1=1

by direct calculation. To see this, put U = Y| n; with n; = £ — E£?, we have

S R <Y R < S REP =g and
i=1 i=1 i=1

E(W2U?) = > E(&&mm) = Y _E(E7) + > EEER +2) E&niEEn; < 45

.4,k 0 i=1 i#] i#£]

As for H32, by (413)

H32<ZE/2mm{1 |W|—|—\/_/4)|t|}k

<2ZE/ dt+QZE/ (W] + V2r/4)|t] ki(t) dt

= Jus —  Ju<

< 2B, + E{(|W| +V2r/4) Z il min(l,ff)}

<23, +E[(\W\ + \/%/4){ g &IT(1&] > 1) + g ‘EZPH

< 2B+ (24 V21 /4) (B2 + B5)
<47 By + 2.7 B3, (4.15)

13



where we use the inequalities
E{W|-[&I(1&] > 1)} <EWO-EGH(I&G] > 1) + BEI(1&] > 1) < 2BET(|&] > 1)

and E{|W|- |&[*} < E[WO|-E|&® +EE* < 2E|[®. Combining (4.11), (4.14) and (4.15)
yields (4.10). O

5 Proof of Theorem 2.1

5.1 Main idea of the proof

Observe that V,, is close to 1 and 1 + D,,, > 0. Remember that we are interested in a
particular type of nonlinear process that can be written as a linear process plus a negligible
remainder. Intuitively, the leading term of the normalizing factor should be a quadratic
process, say V2. The key idea of the proof is to first transform Vj,(1 4+ Ds,)"? to (V2 +
1)/2 + Dy, plus a small term and then apply the conjugated method and the randomized

concentration inequality (4.2). It follows from the elementary inequalities
14+5/2-522<(1+s)Y2<1+s/2, s>-1
that (14 Dy,)Y2 > 1 + min(Dsy,,0), which leads to

V(1 4 Doy)Y? > V;, + V,, min(Day,, 0)
> 14 (V2-1)/2 = (V?—=1)%/2 + V,, min(Ds,, 0)
>V2/24+1/2— (V2 =1)%/2+ {1+ (V? = 1)/2} min(Ds,,0)
>V?/24+1/2— (V2 —1)? + min(Da,, 0). (5.1)

Using the inequality 2ab < a? + b? yields the reverse inequality
V(1 + Do) < (14 Dyy,)/2+ V2/2=V?/2+1/2+ Dy, /2.
Consequently, for any x > 0,

(T, > 2} C{W,+ Dy, > 2(V2/2+1/2 = (V2 —1)* + Do, A0) }

= {aW, —2?V?/2 > 2?/2 — 2 (x(V;? = 1) + Dy, + Doy AO) } (5.2)

and
{Tn > x} D {an —2?V2/2 > 2?2 + l’(!L’Dgn/Q — Dln)}. (5.3)

14



Proof of (2.7). By (5.2), we have for = > 1,

P(T, > )
< P(W,, > 2V,(1+ Dy, AO) — Dy, |Diy| <V, /4, |Dyy| < 1/427)
+ P(|D1,|/V; > 1/42) 4 P(|Day| > 1/42%)
<P(aW, —2°V2/2 > 2% /2 — ay,) + B(W, > (x — 1/22)V,, |V.2 — 1] > 1/22)
+ P(|D1,|/V;, > 1/42) 4+ P(| Dy | > 1/42%), (5.4)

where
Ay, = min {z(V;? = 1)* + | Dy, | + 2Dap, A O, 1/} (5.5)

Consequently, (2.7) follows from the next two propositions. We postpone the proofs to
Section 5.2.

Proposition 5.1. There exists an absolute positive constant C' such that
P(axW, — 2*V2/2 > 2% /2 — 2Ay,) < {1 — ®(2)} exp(C Ly ;) (1 + C Ry ) (5.6)
holds for x > 1 satisfying (2.8) and (2.9).

Proposition 5.2. There exists an absolute positive constant C' such that
P(W,/Vn > —1/22, V2 =1 > 1/22) < C {1 — ®(x)} exp(C L) Ly s (5.7)
holds for all x > 1.
Proof of (2.6). By (5.3),
P(T, > z) > P(aW, — 2°V,2/2 > 2° /2 + 2y,,), (5.8)
where Ay, = 2Dy, /2 — Dy,. Then (2.6) follows directly from the following proposition.

Proposition 5.3. There exists an absolute positive constant C' such that
P(xW, — 2?V?/2 > 2% /2 + 20s,) > {1 — ®(2)}exp(—=C L, ,) (1 — C Ry,,) (5.9)
for x > 1 satisfying (2.8) and (2.9).

The proof of Theorem 2.1 is then complete. O
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5.2 Proof of Propositions 5.1, 5.2 and 5.3

For two sequences of real numbers a, and b,, we write a, < b, if there is a universal

Y

constant C' such that a,, < C'b,, holds for all n. Throughout this section, C7, Cs, ... denote
positive constants that are independent of n. We start with some preliminary lemmas.
The first two lemmas are Lemmas 5.1 and 5.2 in Jing, Shao and Wang (2003). Let X be a
random variable such that EX = 0 and EX? < oo, and set

6 = EX?I(|X| > 1) + E[X]PI(|X]| < 1).
Lemma 5.1. For 0 < XA <4 and 0.25 < 60 < 4, we have

EAM X" =1 4 (A\2/2 — O)EX? + O(1)44, (5.10)
where O(1) is bounded by an absolute constant.
Lemma 5.2. Let Y = X — X?/2. Then for 0.25 < X\ < 4, we have

EeM =14 (A\2/2 - A\/2)EX? + O(1)4,,
E(Ye) = (A —1/2)EX? + O(1)éy,
E(Y?eM) = EX? 4+ O(1)4y,
E([YPe) =0Ms  and  {E(YeM)} =0(1)s,.

where the O(1)’s are bounded by an absolute constant. In particular, when A =1, we have
6—5.551 S EeY S 62.6551' (511)
Lemma 5.3. Let Y = X — X?/2, Z = X? — EX? and write

6 =EX?I(|X]| > 1), &9 =E[XPI(X]|<1).

Then,
IE(Ze¥)| < 4.201; + 1.5619, (5.12)
E(Z%€") < 461 + 2612 + 207, (5.13)
E(|Y Z|e¥) < 200 + b1z, (5.14)
E([Y]Z%€") <3.1611 + 612+ 07y (5.15)
Proof. See the Appendix. O

The next lemma provides an estimate of I, , given in (2.4).
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Lemma 5.4. Let &; be independent random variables satisfying (2.1) and let L,, ., be defined

as in (2.3). Then, there exists an absolute positive constant C' such that
I =exp{O(1)L, .} (5.16)
for all x > 1, where |O(1)] < C.

Proof. Applying (5.11) in Lemma 5.1 to X = 2§ and Y = X — X?/2 yields (5.16) with
0(1)] < 5.5. 0

Our proof is based on the following conjugate method or the change of measure tech-
nique (see, e.g. Petrov (1965)). Let & be independent random variables and g(x) be a
measurable function satisfying Eed&) < oco. Let él be independent random variables with

the distribution functions given by

1

P& <y) = WE{@(](&)[(& <y}

Then, for any measurable function f : R"™ — R and any Borel measurable set C,

P{f(&1,--- &) € O = [[ Be#® x Bl =0@{f(4,,--- &) € C}).
i=1
See, e.g. Jing, Shao and Wang (2003) and Shao and Zhou (2014) for the applications of
the conjugate method in deriving moderate deviations.
Proof of Proposition 5.1. Let Y; = g(&) = &, —&2,/2 with &, = 2&;, and let &, 6
be independent random variables with él having the distribution function

Vi(y) = E{e¥ I(& < y)}/Ee¥i, y € R.

Put Y; = g(&;) = 2§ — 22£2/2 and recall that zW, — 22V2/2 = oY :=Sy. Then, by

the conjugate method,
P(zW, — V2 /2 > 2% /2 — zAy,)

— p(ZQ(@) > 2 — 2AL(&, .. .,gn))

= [[Ee" x E{e=5"I(Sy > 2?/2 — 2A,,)}
=1
= Loy % Hy, (5.17)
where §Y = Z?:l i>i> Hn = E{e_gyl( §Y 2 1'2/2 - xgln)} and 31n - Aln(gb s aén)
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Set
My, = iE}AfZ, i i\/ar(?i) and v, = iED?;\?’
i=1 i=1 i=1

Then it follows from the definition of él that

EY;[* = E(|Vi[® ") /Be" .
Applying Lemma 5.3 with X = 2§, and A\ = 1 yields
Ee¥i = OWoie - E(Y; e¥) = (27/2) EEZ + O(1), (5.18)
E(Y? ") = 2 EE + O(1)6;0,  E(JYi]? €¥) = O(1)8;,

and {E(Y; e¥)}? = O(1)8; ,. In view of (5.11) and (2.8), using a similar argument as in the
proof of (7.11)—(7.13) in Jing, Shao and Wang (2003) gives

m, =Y E(Y;e")/Ee" = 2%/2+ O(1) Ly, (5.19)
=1

02 =Y {E(Y?e")/Ee" — (EY;)*} =2 + O(1) Ly, (5.20)
=1

va = Y _E(|Yi]’e") /Ee" = O(1) Ly, (5.21)
=1

where all of the O(1)’s appeared above are bounded by an absolute constant, say C. Taking
into account the condition (2.9), we have o2 > x?/2, provided the constant C' in (2.9) is
sufficiently large, say, no less than 4C}.

Define the standardized sum W := /Wn = (§y —my,) /oy, and let

5n:a,§1(:)§2/2—mn), T = Ep + Op.

By (5.19)(5.21) and (2.9) with C > 4C},

len] < V20, x_an,x, V0,0 < V8C, x_?’Ln,x, (5.22)
7 — 2| < |en| + |02 — 2% /(00 +7) < 2C 27 Ly < 7/2, (5.23)

which leads to
H, < IE{ exp(—an/W — mn)[(/W — &, > —xﬁln/an)} < Hy, + Hy, (5.24)
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with Hy, = E{exp(—an/W —m)I( W > £n)} and
H,, = IE{ exp(—an/W — mn)I(—zﬁln/an < w— e, <0 )}
Denote by G, the distribution function of /V(7, then Hj,, reads as
Hm:i/me”””MdGAO

— /2 / e T dG, (s + €p)
0

— /2 ( /OOO e 7 d{Gp(s+e,) — (s +e,)}

+ / e 7 dd(s + an))
0
= e (T + Jop). (5.25)

Using integration by parts for the Lebesgue-Stieltjes integral, the Berry-Esseen inequality,
(5.22) and the following upper and lower tail inequalities for the standard normal distribu-
tion

t o 1
e e 2 < / e du < 7 e fort >0, (5.26)
t

we have
| Tin| < 25up [G(t) — @()| < 40,077 S0 Lyy S e /21— B(2)} 7L,
teR

For Js,, by the change of variables we have

e—c2/2 oo e—En/2
Jon = N /0 exp{—(0, +e,)t —t?/2} dt = ﬁly(%)’
where . o - e
U(z) = ) =e /x e dt.
By (5.26),
U(s) > : —532 and 0 < —U'(s)=1—se/? /SOO e P2 dt < l—is for s > 0.

In view of (5.23), x/2 < r, < 3z/2. Consequently, |¥(r,) — ¥(x)| < 4|r, — z|/(4 + 2?),
which further implies that

1 4
n < ——q V¥ T olTn—
Jo _\/ﬂ{ (:C)+4+x2|7‘ x‘}
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<1 — ®(2)}(1+ Coar, —af) < e {1 — ()} (1 + Cya7Ly ).
By (5.25) and the above upper bounds for Jy,, and Jo,,
Hi, <{1—=@(2)} (14 Cyia?L,,). (5.27)
As for Ha,, note that zA;, < 1 by (5.5). Therefore,
H,, < el_“"’2/2IP’(5n — 2l [on < W< En)- (5.28)
Applying inequality (4.2) to the standardized sum 1% gives
P(en — zﬁln/an < w < 5n)

< 17v,0,° + 5:5051E|£1n| + 20,2 ZE‘XZ(&M — £§2) }, (5.29)
i=1

where £§2 can be any random variable that is independent of é, By (5.22), it is readily

known that v,0,? < V8C, :E_3Ln,x. For the other two terms, recall that the distribution
function of & is given by Vi(y) = E{e¥I(&; < y)}/Ee** with Y; = g(¢;). Then

E|A,| = /~-~/A1n(:c1, o) dVi(zy) - dV ()

= I,;;/-.-/Am(xl,...,xn)ﬁ{em) dF,(2;)} = It x E(|Ap| e==1),  (5.30)
i=1

and it can be similarly obtained that for each 1 <17 < n,
E|Y; (A, — A)| = I;L < E{]Y; (Ar, — AD)| X011, (5.31)

Assembling (5.28)—(5.31), we obtain from (5.26) that

o S {1 = ®(2)} 2 2 Lo + [ L 2 (| Ay =)
LY E{Y: (A - AD) =i}
i=1

S = 2@} 27 Lo + AT E(| | 550 Y)

+ 1,2 S E{ min(|€0, 1) A, — AL ez;;m}]’

i=1

where the last step follows from the inequality |t — ¢2/2]¢'~**/2 < 2min(1, |¢|) for all real ¢.
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Recall that Ay, < 2(V?—1)?+|Dy,| +x|Da,|. To finish the proof of (5.6), we only need
to consider the contribution from (V> —1)2. For notational convenience, let Z; = £ —E£?
for 1 <i < n, such that V2 —1=>3" 7 and

(V12— {(v2 -1 =22 4223 7,

i

By Lemma 5.5, (5.28) and (5.29),
Hap S{1— <I>(93)}{Rn,x + 27 2Ly (14 L, ) eC ™ 5} (5.32)
Together, (5.17), (5.24), (5.27), (5.32) and Lemma 5.4 prove (5.6). O

Lemma 5.5. For x > 1, we have
E{(VZ—1)2e=="} < 1o Ly (1 + Ly (5.33)

and

i E{ Y, (Zf +22, ) Zj> eZi-1 YJ} < Twt 4L o (1+ L), (5.34)

i=1

J#i
Proof of Lemma 5.5. Recall that V2 —1=3%"" | Z;. By independence,

E{(ZZ,.)ze ?—119}

= E(Z} ") EeXon¥i 43 E(Zie") - E(Z; ") - EeXiotizia ¥k

i=1 i#j
= I, { D E(Z] ") /B + ) E(Z;e") - B(Z;€") ) (Be”: Eeyj)}. (5.35)
i=1 i#£j

It follows from Lemma 5.3 that |[E(Z;e")| < 2726;, and E(Z7e") < a7 (6in + 07,).
Substituting these into (5.35) proves (5.33) in view of (5.11).
Again, applying Lemma 5.3 gives us

E(|ZYi| ") Sa7%6, and E(Z2|Y;|e") S a7 (6. + 574);

which together with Holder’s inequality imply
ZE{ YZ-(ZZ-2 +2Z;) Zj) ‘ eZ?—le}
i=1 i
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5 ]’I’L,LE x_4LTL,(E(1 _'_ LTL,"E)

n 1/2
+2ZE(|ZZ'YZ'|eYi){E(ZZj)2eZ#in} . (Eer;éiyj)lh

i=1 YE=)
S, In,x x_4Ln,m(1 + Ln,m)a

where we use (5.33) in the last step. This completes the proof of (5.34). O

Proof of Proposition 5.2. This proof is similar to the argument used in Shao (1999).
First, consider the following decomposition

P(W,/V, >z —1/2z, |V? — 1] > 1/2x)
<P{W,/V, > 2 —1/22, (1+1/22)"? <V, <4}
+P{W,/V,, > —1/22, V,, < (1 — 1/22)'*} + P(W,,/V,, > & — 1/23, V,, > 4)

=Y P{(W,,V,) €&}, (5.36)

where £, CR x RT, 1 < v < 3 are given by

& ={(w,v) eERxRY 1 ufv>z—1/2z,\/1+1/2z <v <4},
E={(u,v) ERxR" :u/v>a—1/2z,0<+/1-1/2z}
E={(u,v) e RxR" 1 u/v>2—1/2z,v >4}

To bound the probability P{(W,,V,,) € &}, put t; = xy/1+1/22 and A\, = t;(x —
1/2x)/8. By Markov’s inequality,

P{(W,,V,) € &1} < a? e Momea - RLy2 )2 eh W=V},
where it can be easily verified that

inf (tiu — \v?) =2 +2/2 - \(1+1/2) —1/2 —1/4x.

(u,v)e€r

However, recall that V2 —1=>"" 7, with Z; = £ — E£2, it follows from the indepen-
dence and (5.10) that

E{(Vnz o 1)2 6t1Wn—)\1V3}

— Z E(ZE etl&—)\l&f) . H E(etlgj—MgJZ)

i=1 i
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+ Z E(Z; etlﬁi—xlﬁf)E(Zj etlgj—mgf-) : H E(ehéMék)
i#j k#i,j
Sa ' Loy (14 Lyg) exp(t5/2 = M+ C Ly, ), (5.37)
where we use the fact t3/2 — A\; > 0. Consequently,

P{(Wy, Vo) € £1}/{1 — ®(z)}
S ?Lpa(1+ Lyg)exp(=32/8 + C Ly,) < Lypexp(=37/8 + C Ly, ). (5.38)

Likewise, we can bound the probability P{(W,,,V,,) € &} by using (t3, A2) instead of

(th)\l)v given by
ty =x+/1 —1/22, Ay =227 — 1.

Note that inf(, ,yeg, (tau — Aov?) = 2% — /2 — 1/2 + 1/4x — Xy(1 — 1/2z). Together with
(5.37), this yields

P{(Wy, Vo) € E}/{1 — @(x)}
S 2Ly (1+ L) exp(—=32/4+ C Ly,) < Lypexp(—3z/4+ C Ly,,). (5.39)

For the last term P{(W,,,V,) € £}, we use a truncation technique and the probability
estimation of binomial distribution. Let W,, = Z?:l & 1(x€; < ag), where ag is an absolute
constant to be determined (see (5.43)). Observe that

]P){(Wn, Vn) € (93}

<#(Wo2 20 1/n. 3 gllrlel < 1) 2 9)
=1

+P(1//V\n >2x—1/x, ng[(:ﬂ&\ >1) > 13)

i=1

+P(Z&[{I& >ap) > (x— 1/293)Vn/2)

= J3n + J4n + J5n~

Let .
V2=3"g? with &=¢&l(alg|<1), 1<i<n,
=1

such that
Jon = P(W,, > 2z — 1/z, V? > 3)
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(\/—/4 —z2 E{ 2 an/2}
2 —
<o (5[{ @~ Eéf>} Tl s B )

1=1

Noting that E{&1(x&; > ag)} = —E{&1(x&; > ag)} < 0 for every 4, and
e <1+s+5%2+|s]Pem>E0 /6 for all s,

we obtain

Z‘Wn/2 H 1+%2E522 aO/2 3E{|€Z|3I(|xé-l| <a0)}:|

a0/2 2

< T[{1+ 2B + =02 Bl6 Tl < 1) + 222 EE Gl > 1)
i=1
< exp{z?/8+O(1)L,.}. (5.40)
Similar to the proof of (5.37), it follows that
Jan S0 Ly p(1+ Ly o) exp{—72/8 + O(1)L,, . }- (5.41)
To bound Jy,, let W = Wn — &1 (x€; < agp), then applying (5.40) gives, for any 1,
EeWi'/2 < exp{z®/8 + O(1)L, .}

Subsequently,
—a? - 2 (x/2)& (€ <ap) W /2
Jin < (Ve/13)e™ Y E{&le (|| > 1)} - Ee
i=1
< (Veltw /13) x72L,, , exp{—T2? /8 + O(1) L, . }. (5.42)

Finally, we study Js5,. By Cauchy’s inequality

<IP’<ZI (lz&| > ao) > (x — 1/22) /4)

de~ (z—1/2x)?

< m ZE{eu(\szbao (|x§ ‘ > aO . gEeﬂ('mgib“O)
Sate™ 264P(|I§i| > ag) - H {1+ e*P(|z¢| > ao) }
= ji

Sapexpf{(e'ay® — 1)a’} > EEI(x]g] > 1)

i=1
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S a7 %Ly exp(—12/2 — 2°/22) (5.43)

by letting ag = 11.
Adding up (5.41)—(5.43), we get

P{(W,,V,,) € &} S {1 — ®(2)} Ly 0 exp(C Ly ).

This, together with (5.38) and (5.39) yields (5.7) . O

Proof of Proposition 5.3. Retain the notation in the proof of Proposition 5.1, and
recall that Ay, = x Dy, /2 — D1y, W= S }7; Analogous to (5.17) and (5.24), we see that

P(aW, — V2 /2 > 2% /2 + 2As,)
= L B{eWI(W > 2%/2 + 215,) }
> T, [E{ exp(—o, W — m) (W > e,)}
—E{ exp(—anﬁ/\ —my)I (e, < W<e, + xﬁm/an) }]
> Iy { /OO et 4G (1) — e /2 P(an < W< en + xﬁgn/an)}
=1, (H; ~ H}), (5.44)
for Hy, given in (5.24), and where ¢, = 0, ' (2?/2 —m,,),
Aon = Dby, &), Hyy = e PP(e, <W < &, + 2l /0,).
Following the proof of (5.27), it can be similarly obtained that
Hy, >{1—®)}1—-Ca?L,,). (5.45)
Replacing Ay, with Ay, in (5.28) and using the same argument that leads to (5.32) implies
Hy, < {1 - ®(@)} R (5.46)

Substituting (5.16), (5.45) and (5.46) into (5.44) proves (5.9). O

6 Proof of Theorem 3.1

Throughout this section, we use C',C1,Cs, ... and ¢, ¢, ca, ... to denote positive constants
that are independent of n.
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6.1 Outline of the proof

Put h = (h—0)/o and by = (hy — 0) /0, such that hy(z) = E{h(X1, X, ..., X)X = 2}
and hi(X1), ..., hy(X,) are iid. random variables with zero means and unit variances.

Using this notation, condition (3.3) can be written as

B2 (21, .. ) gc0{7+iﬁ§(x,.)}. (6.1)

i=1

By the scale-invariance property of Studentized U-statistics, we can replace, respec-
tively, h and hy with & and hy, which does not change the definition of Tj,. For ease of
exposition, we still use h and h; but assume without loss of generality that Ehy;; = 0,
Eh?, = 1, where hy; := hy(X;) for 1 <i <n.

For s? given in (3.2), observe that

2 n

Define

then by the definition of 7},,

2 1 1/2
m—1 /(1= e
(n —m)?

such that for any x > 0,
(T, >z} = {T7 > 2/(1+2®m3(n = 1)/(n —m)*)"*}. (6.3)

Therefore, we only need to focus on 777, instead of T,,.
To reformulate T)F = v/nU,,/(ms7) in the form of (2.2), set

W,=3 e 2=y e (6.4
i=1 i=1

where & = n~Y2 hy; for 1 <14 < n. Moreover, put

r(x1, ..., T :h(xl,...,xm)—Zhl(:ci). (6.5)
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For U, using Hoeffding’s decomposition gives v/n U, /m = W,, + Dy, where

Dy, = v > r(Xiy, - X (6.6)

()
m/ 1< << <im<n
However, a direct calculation shows that s3 = V2(1 + Dy, ), where

gAi N (m—1{(m+ 1)n—2m}n
(m 1) (n—=m)?
2m(m —1)n

1
m 1 =1

(n—1)Dgy, = 1+ vn—2{

C(n—m)? m)

S0 =S (X Xu e X ). (6.8)
=1

1<l <<l 1<n
Zj#i,jzl,“.,mfl

In particular, (6.7) generalizes (2.5) in Lai, Shao and Wang (2011) for m = 2. Combining
the above decompositions of U,, and s?, we obtain

T* o Wn_'_Dln
n Vn(l + D2n)1/2‘

(6.9)

To prove (3.4), by (6.3), it is sufficient to show that there exists a constant C' > 1
independent of n such that

P(T; > z) < {1- CI)(:L’)}eCL”’””{l +C (Vam + o) d j;g) } (6.10)

and
P 20) 2 (- e fi- o (Vi a) DL o)
hold uniformly for
0 <z < C 'min{(0/0,)n'*", (n/a,)°}, (6.12)

where L, , = nEE I1(|61.] > 1) + nE[& [P I(|&.| < 1) with &, = & for > 1.

The main strategy of proving (6.10) and (6.11) is to first partition the probability space
into two parts, say G,, and its complement G such that P(G;: ) is sufficiently small,
then find a tight upper bound for the tail probability of |Ds,| on G, ., and finally apply
Theorem 2.1.

First, by Lemma 3.3 of Lai, Shao and Wang (2011), P(V;2 < 02/2) < exp{—n/(324%)}
for all n > 1, where a > 0 is such that Eh?,I(|hy;| > ao) < 0?/4. In particular, we take

a= 41/(17—2)(%/0)13/(13—2) < (2 ap/a)p/(”_2).
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Then it follows from the inequality that sup,.,<ssup,sq (s?/?7'e™*) < 1 and (5.26) that
(recall that 0% = 1)

P(V? <1/2) < C {1 — ®(x)} o, /o) (1 +z)n' P> (6.13)

for all 0 < o < ¢; (6/01) n?/?~1. We can therefore regard {V?},>; as a sequence of positive
random variables that are uniformly bounded away from zero.
For W,,/V,,, applying Lemma 6.4 in Jing, Shao and Wang (2003) implies that for any
t >0,
P{|W,| > t(4+ V,,)} < 4dexp(—t?/2). (6.14)

In view of (6.13) and (6.14), define the subset

oo = {IWal < Va4 + 3, V2> 1/2}, (6.15)
such that
IP’((],";@) < Cy{l — ®(x)}(0o,/0)? (1 + x) n!'=P/? (6.16)
holds uniformly for
0 <z <cmin{(c/oy)n?*7 /n}. (6.17)

Next, we restrict our attention to the subset G, .. Recall the definition of Dy, in (6.7).

By Cauchy’s inequality,
> &
i=1

holds for any € > 0. In particular, taking ¢ = o/(xn™ '0},) for 7 as in (6.18) yields

1
< V2 4 eA? 6.18

|Dan| < C3{oy an Y2 (opx) T ind/2m V, 2N A0 (W / V)40 V2 W | Diy |} (6.19)
In addition to the subset G, , given in (6.15), put
Ene = Gnw N {|D1nl/ Vi < 1/4x}. (6.20)
Together, (6.19) and (6.20) imply that
|Day| < Cy{on an V2 4 (o) " tn?AImA2 } == D3, (6.21)

holds on &, , for all 1 <z < {/n.
Proof of (6.10). By (2.7), Remark 2.2, (6.9), (6.19) and condition (6.17), we have

P(Tr>xz) <{1—®(x)} e (1+C5 R, )
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+P(|D1n]/Vi = 1/42, Guo) + P(|Dan| > 1/427, E,,) +P(G5,)  (6.22)

for all x > 1 satisfying (6.17) and
Ln,x S 12/057 (623)

where R, , is given in (2.5) but with D,, replaced by Ds,,. In particular, for 2 < p < 3, we

have L, , < (0,/0)P 2P n'7P/2 and thus the constraint (6.23) is satisfied as long as
1<2<(1/2)C5 7 (0)o,) /P nt/2 1/, (6.24)
However, for 0 < z < 1, it follows from (2.10) that
P(T; > ) <P(G,) + {1 — ®(x)} (1 + Co Ru),

for Ji’nm as in (2.11) with Dy, replaced with Ds,,.
By (6.16) and (6.22), the upper bound (6.10) follows from the following two propositions.

Proposition 6.1. Under condition (3.3), there exists a positive constant C' independent of
n such that

P(|D1n|/ Vi > 1/42, G i) + P(|Day| > 1/42%, &) < C/am{l — ®(2)} 2*n~/2, (6.25)

holds for all x > 1 satisfying (6.12), where a,, = max{cor,co +m}, G, and &, . are given
in (6.15) and (6.20), respectively.

Proposition 6.2. There is a positive constant C independent of n such that
R,.<Cop 23n 12 (6.26)

forall x > 1 and
Rn. < Copn'/? (6.27)

for 0 < x <1, where oy, is given in (3.1).
Proof of (6.11). Observe that

P(T; > x) > P{W, + D1y > aVi (1 + D2,)"2, Gy}
> P{W, + Dy, > aVo(1 + Dy) "2} = P(GE,).

Then (6.11) follows from (2.6), Remark 2.2, (6.16) and Proposition 6.2. Finally, assembling
(6.17) and (6.24) yields (6.12) and completes the proof of Theorem 3.1. O
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6.2 Proof of Propositions 6.1 and 6.2

We begin with a technical lemma, the proof of which is presented in the Appendix.

Lemma 6.1. There exist an absolute constant C' and constants B1—B4 independent of n,
such that for all y > 0,

P{AZ > a,, y(Bi + By V2)n*™ 2} < Ce ¥/ (6.28)

and

{ | Zl§i1<---<im§n r( Xy, X))l

>yl <oe v/ 6.29
/—am(33 + By Vn2)1/2 nm—1 = y} s Ce ; ( )

where a,, = max{coT,co +m}, and V? and A? are given in (6.4) and (6.8), respectively.

The above lemma generalizes and improves Lemma 3.4 of Lai, Shao and Wang (2011)
where m = 2 and the bound was of the order ne™¥/® instead of e™¥/4. Lemma 7.2 in the

Appendix makes it possible to eliminate the factor n.

Proof of Proposition 6.1. By (6.19) and the definition of &, in (6.20), we get
IP’(|D2n| > 1/427, gn,:c) < IP’(A?L > c3 V2o il Qn@),
provided that 1 < x < ¢yn'/4. Because V2 > 1/2 on G, ,, it is easy to see that
V2> (2B + Bo) ' (By + By V)

for By and B as in Lemma 6.1. Therefore, taking

o C3 n
y= 231 + Bg am:c4
in (6.28) leads to
]P)(|D2n| > 1/4$2> gn,:c) S C eXp{_CS n/(a'm :LA)} (630)

Using (6.29), it can be similarly shown that
P(|D1n|/V; > 1/42, G, i) < Cexp{—csn'/?/(all* x)}. (6.31)
Together, (6.30), (6.31) and (5.26) imply (6.25) as long as
1<z <er(nfay)s. (6.32)
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Proof of Proposition 6.2. For x >0 and 1 <i < n, put V; = 2§ — 2°£2/2, and let

.........

.....

m = r(X1,...,X,,) and note that Er? = < of. The following

.....

In particular, put ry

.....

lemma provides the upper bounds for L,, and L.
Lemma 6.2. For any 0 < x < \/n/2, we have

|L| < Copa®n™, (6.33)
|L| < C{E@? |X1)}Y2an1/2. (6.34)

-----

We postpone the proof of Lemma 6.2 to the end of this section. Recall the definition
of Dy, in (6.6). Using Holder’s inequality, we estimate

Put
C={(ir. 1 imigm) 1 1 < iy <oy <1<y <+ < i < 11}
= J {6 g1, Gm) €C: [{ins i} 0 {0 g = K = G
k=0 k=0
By (5.11),

m
= Z Z E(T’il ,,,,, im T g1,eesiim € jzlyj)

m n n—=k 2m—k y- vin2mtk
= Z E(Tl ..... mT1,.. km+1,...2m—k ezjzl J) ) (Ee 1)

m/)\m—k
k=0
2
—1 -
_ <n) (E6Y1)_2m [n,x Lgn i (n) (n 1) (E6Y1)1_2m Im:c E(L?n 6Yl)
m m/) \m —
" /n n—=k k—2m 2m—k v/,
+Z (m) (m—k) (Eeyl) ? In,zE(ﬁ ..... mT'1,.. km+1,... 2m—k €771 YJ)
k=2
< Cl,n*" (L2, + n'EL? + o} n=?),
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which together with Lemma 6.2 yields for = > 1,

2 n
E{ < Z Tip,..., im> =1 Yj} < CU,% I . xin?m=2,
This, together with (6.6) gives
E(|Dyyn| e23=117) < C oy I, 20~ V2, (6.35)

Recall that ¢; = >0 o 4 zien "(Xis Xer, .., X, -y). Then it can be similarly
derived that
E(y?eXi=1%) < Co? I, x°n* . (6.36)

Together with (6.21), this yields
E(Dj, eX=") < Cop Iy pan™ 2. (6.37)

Next, for each 1 < i < n, let D§2 and D;(Q be obtained from Dy, and Ds,, respectively,
by throwing away the summands that depend on X;. Then, by (6.6) and (6.21), we have

NG
m(,)

Dy, — D] < ;| and

2| Ds,, — DY)

2
-1 _—2m+3/2 2
<Co, n ™" /{% +§ ( E Ti,j,jl,...,j7H>

A N 1<G1< - <gm—2(F#i,5)<n
+2)

( Z Ti,j,jh...,jmz) ( Z 745150 jml) ‘ }
JFi )<n )<n

1< < <fm—2(F#4,j 1<j1<<Jm—1(#£J

Using a conditional analogue of the argument that leads to (6.36) implies
E(y7 e=i#¥7|X,) < C L, 20 E(r] .| X)), (6.38)

as a consequence of which (recall that §; , = z§;)
> E{min(&.l,1)|Dr, — Di| X477}
i=1

< C' /2 Z E[min(|£i,x|, 1){E(¢22 e2j#i Vi ‘Xi>}1/2{E(€Zj;éi Yj)}l/z]

i=1

< ClL,a*n 'y (Be2) P (Br?

i=1



< Cop Ly 2°n 2 (6.39)
For the contributions from | D3, — D§2|, we have

E{ min(|¢; .|, 1)1? eZ#iyj} = E{ min( |€Z. x| 1)- (w? er#in|X.)}

and for each pair (7, ) such that 1 <i # j < n,
E{ min |€zx| 1 ‘(sz]h )(ij,jl _____ jm—l) ezk#yk}
ki Yo 1/2
SE min ‘gzm| 1 {(szgh ) ekt kXZ}
2 1/2
E{(ij,ﬁ ..... jm71) eZk# Yk} :|

7777777

< CO'h nwx2n2m 4’

where we use (6.36) in the second step, and similarly,

2
E{ mln(|£2’w|’ 1)( : :Tivj,jly---vj'rrLfQ) €Zk#i Yk}
2
:E[min(|€i,x|a1)E{< > T’ivj,jh...,jmfz) e2okrs Tk

Adding up the above calculations, we get

XH < Co2 I,

n

ZE{xmm ‘gzm‘ 1)|D3n Di(’,l ‘6 J#Y} < Cah nxx2n—1/2
=1

This, together with (6.35), (6.37) and (6.39) implies (6.26).

Finally, we consider the case of 0 < x < 1. By Holder’s inequality,

-1 9 1/2
EIDlnISOnW(") {E(Zml ,,,,, )} <Copn % and (6.40)
m

ED3, < C'(ah n~? 4 ot n=2mt3/2 EA%) < Copn 2 (6.41)

Moreover, for any pair (i, 7) such that 1 <i# j <mn,

2
Ey; < Copn7, E( > 1/12',1,3'1,...,;'7%2) < Copn™
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and

E{‘ (Zn,j,el,...,zm,2) (ermlljz 1)‘ ‘XZ} .
{( T A T SN

<Co n2m- /2 {E Xz)}1/2

Combining the above calculations, we obtain

SUE|&(Din — DE)| < O 02N (B EGE) Y < C oy (6.42)

i=1 i=1

and

ZE‘I&I{W <1/(1+ 2)}(Ds, — Déﬁi)‘

<CO’ n 2m+3/2{ZE¢2+ZE<sz]31 )

+2;E{I&I-)<Zﬁm =) (i jm)}]

< Copn 2. (6.43)

Assembling (6.40)—(6.43) proves (6.27) and completes the proof of Proposition 6.2. [
Proof of Lemma 6.2. We prove (6.33) by the method of induction, and (6.34) follows

a similar argument. First, for m = 2, observe that
Ly =E(ri,e"™2) = E{r 15 (e — 1)(e" - 1)}.

Using the inequality
ei="/2 — 1| < 2|t| for all t € R, (6.44)

we have (recall that & = n=1/2 hy;)
|L2| S 41’271_1 E|’l“172 h11h12| S 4 Op 1'271_1.
Similarly, noting that Ly = E{ry, ("> — 1)| X1}, we get
7 2 /2 _1/2
as desired.
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For the general case where m > 2, we derive

-----

1<ip < <ipp—1<m

— Z E(rl m 6Yi1+m+Yim72) + ..

-----

1<i1 <+ <ipn_o<m

+(_1)m—1 Z E(r,... meYnJrYiz)

1<iy <ia<m

..... m (e = 1) (e = 1)} + mLps

e (5

where for each k-tuple (i1,...,i) (2 < k <m — 1) satisfying 1 <i; < -+ < i <m,

E(r, men™ ) =E[e"a ™ aE{r(Xy, ..., X)X, ... Xi, }]

ey = L

.....

completing the proof of (6.33) by induction and under the condition that z < /n/2. O

7 Appendix

Proof of Theorem 2.2. The main idea of the proof is to first truncate &; at a suitable
level, and then apply the randomized concentration inequality to the truncated variables.
Forx >0andi=1,...,n, define Y; = 2§ — 2262 /2, and

G=&I{G <1/(1+2)}, Yi=YI{& <1/(1+2)}.

Moreover, put Sy = > 1 Vi and Sy = > 1| Vi
We first consider the case of z > 0. Proceeding as in (5.2) and (5.3), we have

P(Sy > 2%/2 + 2ly,) < P(T, > 2) <P(Sy > 2°/2 — 1A4,), (7.1)

where Ay, = (V2 — 1)* + | Dy, | + Da, A 0 and Ay, = xDs, /2 — Dy,,. Replacing the s
with their truncated versions, we put Az, = x( Z?:l &2 — 1)2 +|D1yn| + 2 Dsy, A O, such that

[P(Sy 2 2%/2 = wAia) = B(Sy = a°/2 — 2,
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<P(max jol > 1/(1+0) < Q42 Y EEI{&] > /A 42}, (72)

and the same bound holds for [P(Sy > 22/2 + 2Ay,) — P(Sy > 22/2 + xAy,)|.
It suffices to estimate the probabilities of the truncated random variables. Consider the

following decomposition
P(Sy > 2?/2 — 2As,) < P(Sy > 2%/2) + P(2?/2 — 203, < Sy < 22/2),  (7.3)

where Sy = Y1 | V; denotes the sum of the truncated random variables. Write m,, =
S EY;, 62 = S Var(Y;) and v, = Yo E[Y;|*. By a similar calculation to that
leading to (5.18),

EY; = —(¢*/2) E& + O(1) (z + 2*)EI{|&G] > 1/(1 + =)},

EY? = 2°E&f + O(1) [Z°E&I{[&] > 1/(1 + 2)} + 2 E[&[*],
ElY;]? = O(1) 2°E|&®  and

Var(V;) = 2°E& + O(1) [2*E & I{|&] > 1/ (1 + z)} + 2°El& ],

where |O(1)] < Cy for some absolute constant C;. Combining these calculations, we have

M, = —2*/2+ 0(1) (z + 27) ZE&?[{I&I >1/(1+ )},

n

or=2"+0(1) 2> [EGH{|&| > 1/(1+ )} + 2EI&] > 2?/2, (7.4)

i=1

where the last inequality holds as long as (1 + 2) 2L, 1., < (2C;)7'. Otherwise, if this
constraint is violated, then (2.10) is always true provided that C' > 2 C}.
Applying the Berry-Esseen inequality to the first addend in (7.3) gives

P(Sy > 2?/2) =1—®(5,) + O(1)0,6,° =1 —®(z) + O(1) (1 +2) ' Lp11a (7.5)

where &, 1=, (2*/2 —m,) =2+ O(1)(1 +x) 'L, 14 by (7.4).
For the second addend in (7.3), applying the concentration inequality (4.2) to W, =
5.1 (Sy — m,) and noting that |Y;| < 3z|&]/2, we obtain

P(2?/2 — 2| As,| < Sy < 2°/2) = P(&, — #3,/5, < W, < &,)

<1762 Y RV + 525, 'E|Asa| +225,2 Y E|Vi(As, — AL)].

i=1 =1

36



i=1 i=1
where Ag, =z (> 1, &% — 1)2 + |D1n| + x| Doy|. Fori=1,...,n, put
n_ 2 ) 2
di = (Zfﬁ—l) - (Zfﬁ—l)
i=1 i
e [s + 23 (62— BE2) - 282 -2 S REI{IE] > 1/(1+ )}
i i=1
Direct calculation shows that
n 2
B(L8-1) £C0+0)  Eurer + L)
i=1

D BGdi| <O +2) (Loge + L3 11y).

i=1

Substituting this into (7.6), we get
P(2%/2 — 2|As,| < Sy < 27/2)

< C|(1+2) Lo s + D1l +2BIDan| + Y E{IE1(1D1n — D) + 2| D2 — D) }|.
1=1

This, together with (7.1), (7.2), (7.3) and (7.5) implies
P(T, <z) < ®(z) + CR,,

for all x > 0, where }u%nx is given in (2.11). A lower bound can be similarly obtained by
noting that P(Sy > 2%/2 + xAq,) > P(Sy > 2%/2) — P(2%/2 < Sy < 22/2 + 2\y,).

We next consider the case of x = 0. It is straightforward that
|P(T, < 0) — ©(0)]
= [P(Wy + Din <0) = @(0)] < [P(Wy, <0) = @(0)] + P(=|D1n| < Wy, < [Dr).
A uniform Berry-Esseen bound (see, e.g. Chen and Shao (2001)) yields |P(W, < 0) —
®(0)] < 4.1L,1. As before, we can use the truncation technique and the concentration

inequality (4.2) to upper bound the probability P(—|Dy,| < W,, < |D1,|). The rest of the

proof is almost identical to that for the case of > 0 and is therefore omitted. O
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Proof of Lemma 5.3. Recall that Z = X? —EX? and Y = X — X?/2. Using the

inequality |e® — 1| < |s]e*V? implies

E{Ze (| X| < 1)} =E[Z{1+O0)|Y|"}(|X]| < 1)]
=E{ZI(|X]| > 1)} + O()E{|Z] - [Y]"""I(|X] < 1)},

where |O(1)] < 1. Because |Y|e¥V0I(|X| < 1) < 1.5|X|I(|X]| < 1), we have
E{|Z] - [Y]e™I(|X| < 1)} < LAE{|XPI(|X] < 1)} (7.7)

However, recalling that if f and g are increasing functions, then Ef(X)Eg(X) < E{f(X)g(X)}.
In particular, we have EX? - P(|X| > 1) < E{| X |*I(|X| > 1)}, which further implies

E{|Z] " I(|X] > 1)} < VeE{X?I(]X| > 1)},

Together with (7.7), this yields (5.12).
For (5.13), it is straightforward that

E(Z?e¥) =R{Z?I(|X| < 1)} + E{Z% (| X| > 1)}

< Ve [E{XPI(|X] < 1)} + (EX?)P(1X]| < 1) - 2EX* - E{X*I(]X| < 1)}]
FE{X e RI(X] > 1)} + Ve(EX?)? - P(1X] > 1)

< VeE{XUI(|X| < 1)} +4E{X?I(|X] > 1)}
+ Ve (EX?)? - 2yeEX? - E{X?I(|X| < 1)}

< VeE{X'I(|X| < 1)} +4E{X?I(|X] > 1)}
+VeEX? E{X?I(|X]| > 1)} — Ve EX? - E{X?I(]X| < 1)}

< VEE{|XPI(X| < 1)} +4E{X?[(|X| > 1)} + Ve {EX?1(X| > 1)},

where in the third inequality we use the inequality supy,.,{z* exp(z — 2°/2)} < 4.

Moreover, noting that

sup{(1 — z/2)exp(r —2*/2)} <1 and ilég{‘x — 2% /2| exp(x — 22/2)} < Ve/2,

|z|<1
we obtain
E(|YZ|e") =E{|YZ| " I(|X| < 1)} + E{|Y Z| " I(|X| > 1)}
<E{|X?-EX?|-|X[I(|X]<1)}+ gE{X2](|X| > 1)}
<2E{X?I(|X] > 1)} + E{|X]PI(|X] < 1)},
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which proves (5.14).
Finally, for (5.15), it follows from the inequality sup, - {|2*—2*/2|exp(z—2?/2)} < 3.1
that

E([Y]|Z2%eY) = E{Z?|V | I(|X| < 1)} + E{Z?|Y| " I(|X]| > 1)}
< %E{Z2I(|X\ < 1)} +max |3.1E{X?I(|X]| > 1)}, % (EX?2P(1X| > 1)}
< YOR(XPI(X| < 1))
+max |3.1E{X?I(|X]| > 1)}, %E{X21(|X| > 1)} + % {EX?I(|X]| > 1)}2},

as desired. ]

Proof of Lemma 6.1. We start with two technical lemmas. The first follows Lai, Shao and Wang
(2011).

Lemma 7.1. Let {&;, F;,i > 1} be a sequence of martingale differences with EE? < oo, and
put

Dy =) {& +2E(|F) + 3EE ).
1=1

F( )

&
=1

Then we have

> an) < V2 exp(—2%/8) (7.8)

for all x > 0. In particular, if {&;,i > 1} is a sequence of independent random variables

with zero means and finite variances, write

5.=36 V=3¢ wd B =Y EE
i—1 i=1 i=1
such that D2 = V> + 5B2. Then for any x > 0,
P(|S,| > 2D,) < V2 exp(—2*/8) (7.9)
and
E[S2I{|S,] > x(V, + 4B,)}] < 23 B2 exp(—2?/4). (7.10)
The following result may be of independent interest.
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Lemma 7.2. Let {&;,1 > 1} and {n;,1 > 1} be two sequences of arbitrary random variables.
Assume that the n;’s are non-negative, and that for any u > 0,

E{&GI(& > umi)} < cie™ ", (7.11)

where {c,¢;,i > 1} are positive constants. Then, for any u >0, v >0 andn > 1,

cu "

IP’{ ég > u(v n én)} << Zlc (7.12)

cCusv “

Proof of Lemma 7.2. For any v > 0 and v > 0, applying Markov’s and Jensen’s inequalities
gives

L.H.S. of (7.12) < IP{ i(& —un;) > uv}

1=1

< U—IUE{ zn:(& - Wh’)}+

i=1
1 n
< o ZE(fz - Wh’)+7 (7.13)
i=1

where 2 = max(0, z) for all x € R. For each 1 < i < n fixed, it follows from (7.11) that

[e.e]

un;

1
< [T B > )
1

—Cu

o e
< ci/ ttexp(—cut) dt < —c;,
1 CcCUuU

which completes the proof of (7.12) by (7.13). O

To prove Lemma 6.1, we use an inductive approach by formulating the proof into three
steps.

Here, C' and By, B, ... denote constants that are independent of n. Recalling (6.1), it
is easy to verify that

(@1, ) < 20 {1+ A (21) + - + B (zm) }, (7.14)
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where a,, = max{cy7,co +m}. In line with (6.4), let W,, = n~/23°" hy; and V? =

n~!t 37" | hi;. Here, and in the sequel, we write
hli = hfl(Xz)7 hj,il...ij = E{h(Xl, c. ,Xm)|XZ‘1, c. 7Xij}7 2 < j < m,

for ease of exposition. The conclusion is obvious when 0 < y < 2., therefore we assume

y > 2 without loss of generality.
Step 1: Let m = 2, then (7.14) reduces to

r(zy, x5) < 2a2{1 + h3(z1) + h%(l’g)}, (7.15)

where ay = max{cy 7, cp+2}. We follow the lines of the proof of Lemma 3.4 in Lai, Shao and Wang
(2011) with the help of Lemma 7.2.

Retaining the notation in Section 6 for m = 2, we have

n n n
=3 Wk = Y my= Y r(X,X;), 1<i<n
i=1 j=1,j#i j=1,j#i

Conditional on X;, note that 1; is a sum of independent random variables with zero means.

To apply inequality (7.10), put
ti :Ui+4bi, U?:ZT?J’ b? :ZE(’I"Z%AXZ)
i i
for 1 <i <mn. By (7.10), E{¢2I(¢? > y12)| X;} < 23b2e¥/*. Taking expectations on both

sides yields
E[p21{y? > yt?}] < 23Er},(n — 1)e ¥/,

Applying Lemma 7.2 with & = ¢2, n; = t;, u = y and v = agn(n — 1) gives

P{Ai > y(z t3 + agn(n — 1)) } < C’Eri2 (ag y2)_16_y/4. (7.16)

i=1

Direct calculation based on (7.15) shows
~ 2 2
Zvigag(n—l) (2+4V7) Zb < as(n—1)n(4+2V7),
which further implies

D 7t an(n—1) <17 (07 + b)) + azn(n — 1) < az(n — 1)n(103 + 102V;7).

i=1 i=1
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Substituting this into (7.16) with y > 2 proves (6.28).
As for (6.29), let F; = o{X, : i < j} and write

Note that {R;, F;,j > 2} is a martingale difference sequence. Then using the sub-Gaussian

inequality (7.8) for self-normalized martingales yields

IP{ > i

1<i<j<n

> 2y (Q2+202 +3)_ ER) 1/2} <V2e, (7.17)
j=2

where . .
Q=Y R, Qi=3 ER|F)
=2 j=2
Observe that Q% and A? have same structure, thus it can be similarly proved that
P{Q} > ayyn®(102V,? + 103)} < Cay'Erf, e ¥/ (7.18)

For , Write

j—1 Jj—1
ti =u; +4d;, where u? = rij, d? = ZE(T3]|X]) 2<j<n, (7.19)
=1 i=1

then it follows from a conditional analogue of (7.10) that
E{R:I(R: > yi?)|X;} < 23d7e ¥/*. (7.20)

Therefore, for y > 2,

P{@i > y(i E(£7|F;-1) + azn(n — 1)) }

<= zéz{?i;z<3< SRl

+ IP’{ Z E{RI(R} > yt})|Fj—1} > yagn(n — 1)}
j=2

1 - .
L SR ) < CaEhe 2
asyn(n —1) = ’
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where in the last step we use (7.20).

For d7 and u? given in (7.19), we have

7j—1
E(U§‘E 1 :ZE Z]‘X><4a2]_1 +2(L22h1“
=1

=

j—1
B(BIFj1) = Y12, < 20305 — 1) + 200 Y (b + ),
i=1

i=1

<

leading to

N EE|Fm) <17 B Fj1) + E(d}|Fjm1)} < az(n — 1)n{104 + 136V},

Jj=2 Jj=2

Substituting this into (7.21) yields
P{Q? > ap yn?(136V? +104)} < Ca;lEri2 e /4, (7.22)

Together, (7.17), (7.18), (7.22) and the identity > ", ER} = sn(n—1)Er} , prove (6.29).

Step 2: Assume m = 3. By (7.14),
7321, 02, 73) < 2a3{1 + h3(z1) + hi(zq) + hi(x3)} (7.23)
and for ro(x1, x9) = E{r(Xy, X2, X3)| X1 = 21, Xo = 22},
r3(z1, 29) < 2a3{2 + h3(z1) + h2(z2)}. (7.24)

Again, starting from AZ = Y% | 1? with

vi= Y (XXX = ) Tk

1<j<k<n 1<j<k<n
J,k#i J,k#i
n j—1 n j—1
= E E (T’ivj,k—rivj)+§ § T
j=2 k=1 j=2 k=1
A ki A ki
n
=>» R+ E {j—1-1(j > i)}ri;. (7.25)
— =
i i

Conditional on (X;, Xj), R;; is a sum of independent random variables with zero means.
Define t; ; = v; j + 4b; j, where

-1 -1
2 2 2
t7, = (rige—7ig)? =Y (haije — hagy — hu)?,
k=1 k=1
ki ki
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J—1

-1
= EB{(rij — 7i) X0 X5} =D [B{(hsje — han)’|1 X5, X5} — b3 ;).

k=1
k#i k#i

Applying (7.10) conditional on (X;, X;) gives

E{(R};I(Ri; > /yti;)|Xi, X;} <2307 e /%,

Then it follows from Lemma 7.2 that

n n 2 n n
p{z( 3 Rm) Zyn( t,zﬁagns)}
i=1 N j=2,j#i i=1 j=2,j#i

J=2,571 =
n n n
<[ Y my(Y Y aran))
1=1 j=2,j7#i 1=1 j=2,j7#1i

This, combined with the inequality 7" | Y77, . 7, < azn®(By + B,V,}) implies

n n 2
IP{ > ( > R,-vj) > agyn®(By + 1+ Bgv,f)} < Ca3'Eri, e/t (7.26)
i=1 N j=2,j#i

For the second addend in (7.25), consider r;; = {j — 1 — I(j > i)}r;; as a new (degen-
erate) kernel satisfying E(7; ;| X;) =

E(7;,]X;) = 0. Then by similar arguments as in Step
1, we obtain

n n 2
P(Z [ Z {j—1-1( > z)}r”] > asyn*(Bs +B4Vn2)) < CaglEriQ,g e /4, (7.27)

i=1 L j=2ji
Together, (7.25), (7.26) and (7.27) prove (6.28).

To prove (6.29) for m = 3, consider the following decomposition

Z (X217X22>X ) Z T4y g is

1< <12<13<n 1<11<12<23<n
n
= E E (Til,i%k - Ti17i2) + E E T'i1 g
k=3 1<ii<ia<k k=3 1<ii<ig<k
n n—1 j—1
= E E Tzl io,k — Tiq, 22 + E E Tz ]
k=3 1<ii<ia<k 7j=2 i=1
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= Z (rije = Tij — Tik) + (= Drjw+ (n—J)ri;
k=3 j=2 =1 k=3 j=2 7=2 =1
n k—1 n k—1 n—1
= TI Jk + T;,]k + 71;'(7 (728)
k=3 j=2 k=3 j=2 =2
where
Jj—1 Jj—1
P =2 (g —rig—rik), Thp =0 — Ve and = "(n—j)ri;.
i=1 i=1

Put Ry = Ry, +R5,, Rj, = 25;21 ] and R, = Zf;; 75 - We see that { Ry, i, k >
3} is a sequence of martingale differences, and by (7.8),

o(Sn
k=3

Note that conditional on (X}, X}), ] ;4 is a sum of independent random variables with zero

n 1/2
> /2y {Z {R;; + 2E(R2| Fron) + 3ER;;2H ) <V2e (7.29)
k=3

means, and given Xy, 73 ;. are independent with zero means. Then it is straightforward to
verify that

n n k—1 n
D ERPZ <2 (k—2)) Eri% +2) Ry < Cagn’ (7.30)
k=3 k=3 =2 k=3
Moreover, by noting the resemblance in structure between R} and v; (see (7.25)), we
have
IP{ > R > asyn*(Bs + Bﬁv,f)} <Ce v, (7.31)
k=3

which is analogous to (6.28).
It remains to bound the tail probability of >~} s E(R;*|Fy—1). In view of (7.28), let
= vjy, + 405, for 2 < j <k < n, where

j—1
V=) ik — iy — i) b= B{(rige — rig — i) 21X, Xi ),
i i=1

and for 3 < k <n, put

k-1 k-1

* % * *2 *2 * *2

ty = vy +4b,, v = § Ty K Op = E E(ry 5% Xe).
j=2 7j=2
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Recall that R; = Ry, + R, = Zf 21(7'1 gk T 751). We proceed in a similar manner as
n (7.21):

E(R;*| Fi-1)
k=3
k—1 n
<2 Z —2) Y E(ri%lFact) + 2> E(RS|Fin)
= j=2 k=3
n k-1

Y (k= 2E[ri% {1l < Vatse) + 1(ri el > Vuts ) HFe-a]
k=3 j=2

123 E[RE{I(Rs (] < Vit) + (R3] > Vi)Y Fia].
k=3

By (7.10) and the Markov inequality, we have (recall that y > 2)
n k—
P{ S0 Z Bl > VI IFin} 2 o'
k=3
< (azyn")™ (k-2 ZE{rUkl (I el > VUt )| Far ) < Ce¥/t (7.32)

k:3

and
P[ZE{R&IOR;A o e > as yn4]
k=3
< (agyn®) ™' Y E{RZI(R 4] > VI )| Fioa } < O™, (7.33)
k=3

However, it follows from (7.23) and (7.24) that

n k—1
D (e =2) > B{ri% I (75 5l < VUt Faa} < asyn® (B + BsVy), (7.34)
k=3 7j=2
S B{RSZI(|R | < Vyti)|Fiei} < asyn®(Bo + BioVy2). (7.35)
k=3

Assembling (7.29)—(7.35), we obtain

(S

k=3

> \azyn® (B + B12Vn2)1/2} < Ce¥,
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By induction, a similar result holds for Z;:; 77 that is,

P{ ZT; > \/@Z/nz(Bm + 314‘/3)1/2} < Ce v,

=2
This completes the proof of (6.29) for m = 3.

Step 3: For a general 3 <m < n/2,

k
iz, .. a) < 2am, <m —k+1+ Z h%(:@)), (7.36)
j=1
where 7y (zq,...,x,) = E{r(Xy,.. ., Xpn)|Xi=21,.. ., Xp=x} for k=2,...,m.

To use the induction, we need the following string of equalities:

wi = Z Tfl,...,fmfl,i

1<01 < by 1<
el 170
n

= E E (Tgly---yszkszlyi - 7152,“.7%%1,2')

bpp—1=m—1 1<8y < <Ly _9<Llypy_q
Cm—171 L1seslm 274

+ Y {1160 < O) ey

2<0y <<y 1 <1
Coreeirlyy 11

=1+ Yoy (7.37)

Moreover,

E (TzlynwszZZ'mflyi - Wz,...,fmq,i)

bp—1=m—1 1<8y < <Ly _o<Lpy_1
Ly 170 L1yl _oF1

z : Tgly---yszlyi

bp—1=m—1 1<8y < <Ly _o<Lpy_1

=
| 7|
3
M- 111

P 01l i
n mel_l 53—1 52—1
o v
- e 7151,,,,7Zm,1,2
Lbpp—1=m—1 Ly, o=m—2 Lo=2 £1=1
Lo 1 F1 Lo —2F1 LoF#i L1 #i
n bn—1—1 l3—1
v
- § . E Ré%---lmflyi
bp—1=m—=1 Ly, _o=m—2 Lo=2
Loy —1 70 Ly —2 7t LoFi
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with

-1
Ty, = Tl 2 10— Tl 15 RZZ---,mel,i = § :T€1,~~~75m—1,i'
£1=1
£y #i
Conditional on (X;, Xo,, ..., Xe,, ,); Rey.. 0, i is a sum of independent random vari-
ables with zero means. Also, it is straightforward to verify that
bn—1—1 l3—1
n—1
Ui, <
10 = 427 lm—1,1
m — 2
,,nlleQOZ Lo=2
Cyp—17% C—o#i La#i
Next, let t, = v, + 4b,, where
-1 -1
oo w2 y2 w2
Ve = Z Tzlv lm—1,17 bg o Z E(Tfl Zm,17i|Xi7 X£7 XZS s 7X£m,1}-
l1=1,017#i l1=1,017#i

Similar to the proof of (7.26), we derive from Lemma 7.1

(2 T fn()e -2l

i=1 4pp—1=m—1 Lo=2
L — 171 LoFi

with a probability of at least 1 — C' exp(—y/4) for all y > 2. This, together with the
following inequality

n n l3—1 n
§ : § : 2 : 72 2
e tég S (077 <m) (315 + Ban)
1=1 lpp—1=m—1 Lo=2
Cp—1 70 LoFi

which can be obtained by using (7.36) repeatedly, gives

P{ Z ¢ii > A, yn®™? (317 + Blsv,f)} < Ce v, (7.38)

i=1

For 15 ;, note that the summation is carried out over all (m — 2)-tuples and
‘{62 - 1 - 1(Z < 62)7”[27 ) L — 1,2 | < n ‘TZ% . L — 17i|’

Regarding {lo — 1 — 1(i < €2)}rs, 0, ,i as a (weighted) degenerate kernel with (m — 1)
arguments, it follows from induction that

P{ Z ¢§,z’ > Ay yn®" 2 (319 + Bzovnz)} < Ce ¥, (7.39)

i=1
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Assembling (7.37), (7.38) and (7.39) yields (6.28).
Similarly, using the decomposition
Z T(Xila .
1<ip < <im<n
k=m 1<i1 <---<im-1<k

>

1<ip <+ <im—1<n—1
Because E(ri, i 1 k| Fk—1) = Tiy,oim 15

e,

1Si1 <"'<7:m71§k

aXim) -

(Tih---,imfl,k - Ti17---7im71)’ Fk}

1<i1 < <im<n

(Til,...,i,,,L,l,k - Til,...,i,,,L,l)

(N~ 1) T -

k>m

is a martingale difference sequence, such that the following analogue of (7.29) holds:

P> R
k=m
For m < k < n fixed, extending (7.28) gives

R = >

1<i1 < <im—1<k

k=

i0—

k—1 1
= § : s E (Ti17i27~~~7im717k AT .

im—1=m—1 i1=1

i3—1

k—1
+ E B E W (Tigim 1k = Tig. i

Im—1=m—1 19=2

k—1
—|——|— E Wim—1 ’r’im717k,

im—1=m—1

where w; = (Z;__;) for 2 < 7 < m —1, and set w,

ijp1—1
*

i;=j

. _ kel
and 7y, =D i Wm—1Ti,_, &, Such that

* *
R = E Tigyeoim—1,k T Z

2<in < <im—1<k—1
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(Til,---vimfl,k - ril,---vimﬂ)

3<iz < <lpm—1<k—1

n 1/2
> /2y {Z {R;;? +OE(R2|Fy) + 31@3,12}} ) <V2ev,

T Tigysim—1,k + Ti?,---yimfl)

1 7 Tigimo1,k + Ti3,~~7im71)

= 1 for convention. Moreover, for

/rj,ij+1,...,im,1,k - : : w] (rij,...,’im,Lk - /r’ij,...,im,1 - /r'l'j+17~~-7im717k + TijJrlv---vimfl)

T;,ig,...,im,hk +eeet T;kn—l,k‘ (7.40)



X

Tm—19

For each 1 < j < m — 2, conditional on (X; is a sum of

Tjp1s

Xk) TJ Uit 1s-slm—1,k
independent random variables with zero means, and so r,_, , is conditional on Xj.

In particular, we have

n n 2
Serpon-0Y B X )
k=m

j=m 2<in< <l —1<k—1

2
+E< Z T2 mm) +"'+E7”if_1,k}

3<iz < <im—1<k—1

<(m-1) i {(i:i) Z Ers ik

k=m 2<in <o e Ly <k—1

k-3 . .
N T R

3<izg < <im—1<k—1

Sg(m_ma{r?(xl,...,Xm)};{( )(:1 )
(5 Y we +;(—1)}

2<in < <im—1<k—1 i

< C A, n2m—27

which extends inequality (7.30). In view of (7.40), inequalities (7.31)—(7.35) can be similarly
extended by using Lemma 7.1 and Lemma 7.2 in the same way as in Step 2. The proof of
Lemma 6.1 is then complete. O
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