PHYS5550 Topics in Theoretical Physics (Quantum Optics)
 Course information  |  Notice board  |  Download area  | Discussion Forum PHY Home Course Pages

PHYS5550 Topics in Theoretical Physics (Quantum Optics)

Concept of photons, properties and applications of nonclassical light, photo-detection of optical coherence, photon-atom interaction models, quantum theory of damping, laser theory, atom coherence effects and an introduction to quantum communication. Students are advised to take phys4221 or its equivalent before taking this course. Prerequisite: permission of the instructor.
Lecturer

Prof. Sen YANG
Office: Science Centre North Block 344, Tel: 3943-1122,
Email: senyang@phy.cuhk.edu.hk
Consultation Hour: Thursday 3:00 pm - 5:30 pm

Teaching Assistant(s)

Mr. Kin On HO
Office: SC 313,
Email: koho@phy.cuhk.edu.hk
Consultation Hour: Wednesday 2:30 pm - 4:15 pm
Prefer to make an appointment by email at any time you want.

Lecture Class

Wednesday 09:30-11:15 (Starting from Oct.21, SC-L4 and online)
Thursday 11:30-12:15 (Starting from Oct. 22 LHC-103 and online)

Tutorial Class

Thursday 12:30-13:15 (Starting from Oct. 22 LHC-103 and online)

Midterm exam

Nov.12 in class

Final exam

Dec 10th 9:30am to 12:00pm SC L4 and online

Textbook(s)


Reference Books

R. Loudon, Quantum theory of light (Oxford University Press, 2000).
M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge
Uninversity Press, 1997).
D. A . Steck: Quantum and Atom Optics Notes
http://atomoptics-nas.uoregon.edu/~dsteck/teaching/quantum-optics/quantum-optics-notes.pdf
L. Mandel and E. Wolf, Optical coherence and quantum optics
(Cambridge University Press, 1995).
J. J. Sakurai and S. F. Tuan, Modern quantum mechanics (Addison
Wesley, 1994).
C. Cohen-Tannoudji, G. Grynberg, and J. Dupont-Roc, Photons and
atoms - Introduction to quantum electrodynamics (Wiley-Interscience, 1997).
C. Cohen-Tannoudji, G. Grynberg, and J. Dupont-Roc, Atom-photon
interactions: Basic processes and applications (Wiley-Interscience, 1998).

Assessment Scheme

Homework: 30%
Mid-term exam: 30%
Final exam: 40%

Course Outline

1. Classic approaches on matter-radiation interactions.
2. Semiclassical approach on atom-radiation interaction.
3. Classic theory on optical coherence.
4. ESR/NMR.
5. Quantization of radiation field and atom-photon interaction.
6. Coherent state, squeezed state, thermal state.
7. Photon statistics and correlations, interference.
8. Resonance fluorescence and light scattering.
9. Cavity QED (optional).