PHYS5550 Topics in Theoretical Physics (Quantum Optics) | |
Course information | Notice board | Download area | Discussion Forum |
Concept of photons, properties and applications of nonclassical light, photo-detection of optical coherence, photon-atom interaction models, quantum theory of damping, laser theory, atom coherence effects and an introduction to quantum communication. Students are advised to take phys4221 or its equivalent before taking this course. Prerequisite: permission of the instructor.
Prof. Sen YANG Office: Science Centre North Block 344, Tel: 3943-1122, Email: senyang@phy.cuhk.edu.hk Consultation Hour: Thursday 3:00 pm - 5:30 pm
Mr. Kin On HO Office: SC 313, Email: koho@phy.cuhk.edu.hk Consultation Hour: Wednesday 2:30 pm - 4:15 pm Prefer to make an appointment by email at any time you want.
Wednesday 09:30-11:15 (Starting from Oct.21, SC-L4 and online) Thursday 11:30-12:15 (Starting from Oct. 22 LHC-103 and online)
Thursday 12:30-13:15 (Starting from Oct. 22 LHC-103 and online)
Nov.12 in class
Dec 10th 9:30am to 12:00pm SC L4 and online
R. Loudon, Quantum theory of light (Oxford University Press, 2000). M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge Uninversity Press, 1997). D. A . Steck: Quantum and Atom Optics Notes http://atomoptics-nas.uoregon.edu/~dsteck/teaching/quantum-optics/quantum-optics-notes.pdf L. Mandel and E. Wolf, Optical coherence and quantum optics (Cambridge University Press, 1995). J. J. Sakurai and S. F. Tuan, Modern quantum mechanics (Addison Wesley, 1994). C. Cohen-Tannoudji, G. Grynberg, and J. Dupont-Roc, Photons and atoms - Introduction to quantum electrodynamics (Wiley-Interscience, 1997). C. Cohen-Tannoudji, G. Grynberg, and J. Dupont-Roc, Atom-photon interactions: Basic processes and applications (Wiley-Interscience, 1998).
Homework: 30% Mid-term exam: 30% Final exam: 40%
1. Classic approaches on matter-radiation interactions. 2. Semiclassical approach on atom-radiation interaction. 3. Classic theory on optical coherence. 4. ESR/NMR. 5. Quantization of radiation field and atom-photon interaction. 6. Coherent state, squeezed state, thermal state. 7. Photon statistics and correlations, interference. 8. Resonance fluorescence and light scattering. 9. Cavity QED (optional).