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Semiparametric Estimation of
Value-at-Risk

1. Introduction

Risk management has become an important topic for financial
institutions, regulators, nonfinancial corporations and asset
managers. Value-at-Risk (VaR) is a measure for gauging the
market risks of a particular portfolio. VaR shows the maxirnum
loss over a given time horizon at a given confidence level. The
review article by Duffie and Pan (1997) as well as the books edited
by Alexander (1998) and written by Dowd (1998) and Jorion (2000)
provide a good introduction to the subject.

The field of risk management has evolved very rapidly, and
many new techniques have since been developed. Ait-Sahalia and
Lo (2000) introduced the concept of the economic valuation of
VaR and compared it with the statistical VaR. Other methods
include historical simulation approaches and their modifications
(Hendricks, 1996; Mahoney, 1996); techniques based on
parametric models (Wong and So, 2000), such as GARCH models
(Bollerslev, 1986; Engle, 1995) and their approximations; estimates
based on extreme value theory (Embrechis, Kliippelberg and
Mikosch, 1997) and ideas based on variance-covariance matrices
(Davé and Stahl, 1997). The problems of bank capital and VaR
were studied in Jackson, Maude and Perraudin (1997). The ac-
curacy of various VaR estimates was compared and studied by
Beder (1995) and Davé and Stahl (1997). Engle and Manganelit
(1999) introduced a family of VaR estimators, called CAViaR,
using the idea of regression quantile.

An important contribution to the calculation of VaR is the
RiskMetrics of J. P. Morgan (1996). The method can be regarded as
a nonparatnetric estimation of volatility together with a normality
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assumption on the return process. The estimator of VaR consists
of two steps. The first step is to estimate the volatility of holding a
portfolio for one day before converting this into the volatility of
multiple days. The second step is to compute the quantile of
standardized return processes through the assumption that the
processes follow a standard normal distribution. Following this
important contribution by J. P. Morgan, many of the subsequent
techniques that have been developed share a simiiar principle.

Many techniques in use are local parametric methods. By
using the historical data at a given time interval, parametric
models such as GARCH(1,1) or even GARCH(0,1) were built. For
example, the historical simulation method can be regarded as a
local nonparametric estimation of quantiles. The techniques by
Wong and So (2000) can be regarded as modeling a local stretch of
data by using a GARCH meodel. In comparison, the volatility
estimated by the RiskMetrics is a kernel estimator of observed
square returns, which is essentially an average of the observed
volatilities over the past 38 days (see Section 2.1}. From the func-
tion approximation point of view (Fan and Gijbels, 1996), this
method basically assumes that the volatilities of the last 38 days
are nearly constant or that the return processes are locally
modeled by a GARCH(0,1) model. The latter can be regarded as a
discretized version of the geometric Brownian over a short time
period for the prices of a held portfolio.

An aim of this paper is to introduce a time-dependent semni-
parametric model to enhance the flexibility of local approxima-
tions. This model is an extension of the time-homogeneous
parametric model for term structure dynamics used by Chan et al.
(1992). The pseudo-likelihood technigue of Fan et al. {forthcom-
ing) will be employed to estimate the local parameters. The
volatility estimates of the return processes will then be formed.

The windows over which the local parametric models can be
employed are frequently chosen subjectively. For example, in the
RiskMetrics, decay factors of 0.94 and 0.97 are recommended by J.
P. Morgan for computing daily volatilitfes and for calculating
monthly volatilities (defined as a holding period of 25 days),
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respectively. It is clear that a large window size will reduce the
variability of estimated local parameters. However, this will in-
crease modeling biases (approximation errors). Therefore, a com-
promise between these two contradictory demands is the art
required for the selection of a smoothing parameter in non-
parametric techniques (Fan and Gijbels, 1996). Another aim of this
paper is to propose new techniques for automatically selecting the
window size or, more precisely, the decay parameter. This will
allow us to use a different amount of smoothing for different
portfolios to better estimate their volatilities.

With estimated volatilities, the standardized returns for a
portfolio can be formed and a quantile of this return process is
needed for estimating VaR. The RiskMetrics uses the gquantile of
the standard normal distribution. This can be improved by es-
timating the quantiles from the standardized return process. In
this paper, a new nonparametric technique based on the sym-
metric asswmption of the distzribution of the return process is
proposed. This increases the statistical efficiency by more than a
factor of two as compared with the usual sample quantiles. While
itis known thal the distribution of asset returns is asymmetric, the
asymmetry of the percentiles at a moderate level of percentages o
is not very severe. Qur experience shows that moderate o. efficien-
cy gains can still be made by using symmetric quantile methods.
In addition, the proposed technique is robust against the mis-
specification of parametric models and outliers created by large
market movements. By contrast, parametric techniques for es-
timating quantiles have a higher statistical efficiency for estimated
quantiles when the parametric models fit well with the return
process. Therefore, in order to ascertain whether this gain will
materialize, we also fit parametric f-distributions with an un-
kniown scale and unknown degree of freedom to the standardized
return. The method of quantiles and the method of moments are
proposed for estimating unknown parameters and, hence, the
quantiles. The former approach is more robust, while the latter is
more efficient.
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Economic and market conditions vary from time to time. It is
reasonable to expect that the return process of a portfolio and its
stochastic volatility will depend in some way on time. Therefore,
a viable VaRk estimate should have the ability to self-revise the
procedure in order to adapt to changes in market conditions. This
includes modifications of the procedures for estimating both
volatility and quantiles. A time-dependent procedure is proposed
for estimating VaR and has been empirically tested. It shows
positive results.

The outline of the paper is as follows: Section 2 revisits the
volatility estimation of J. P. Morgan's RiskMetrics before going on
to infroduce semiparametric models for return processes. Two
methods for choosing time-independent and time-dependent
decay factors are proposed. The effectiveness of the proposed
volatility estimators is evaluated using several measures. Section 3
examines the problems of estimnating the quantiles of normalized
return processes. A nonpararmetric technique and two parametric
approaches are introduced. Their relative statistical efficiencies
are studied. Their efficacies for estimating VaR are compared with
J. P. Morgan’s method. In Section 4, newly proposed volatility
estimators and quantile estimators are combined to yield new
estimators for VaR. Their performances are thoroughly tested by
using simulated data as well as data from eight stock indices.
Section 5 summarizes the conclusions of this paper.

2, Estimation of Volatility

Let 5¢ be the price of a portfolio at time . Let
re=1og(5./803)

be the observed retwrn at time ¢. The aggregate return at time ¢ for
a predetermined holding period t is

Riz= 10g(st+1:—1/5t-1) =Tt ot el
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Let € be the historical information generated by the process {5,);
namely, £; is the o-field generated by S;, Siy, - If S; denotes the
current market value of a portfolio, then the value of this portfolio
at time t + T will be Sy = 5; exp(Resq:). The VaR measures the
extreme loss of a portfolio over a predetermined holding period ©
with a prescribed confidence level 1 — o More precisely, letting
Vi1, be the a-quantile of the conditional distribution of Ry, ¢

P (Rt+1;r > Vt+1,r I Q‘i) =l-a

with probability 1 - a, the maximum loss of holding this portfolio
for a period of Tis §;V,1 - namely, the VaR is 5,V 41, See the books
by Jorion (2000) and Dowd (1998).

The current value 5, is known at time ¢. Thus, most efforis in
the literature concentrate on estimating V4.1 .. A popular approach
to predicting VaR is to determine, first, the conditional volatility

2
Opgc= Var(RH-l;: ’ Qt)

and then the conditional distribution of the scaled variable
Ry 2/ 61 This is also the approach that we follow.

2.1 Rewisiting the RiskMetrics

An important technique for estimating volatility is the Risk-

Metrics, which estimates the volatility of a one-period retun

(x=1)or= 03’1 according to

8 = (1-A) riq + ALy, 1)

with A = 0.94. For a 1-period return, the square-root rule is fre-
quently used in practice:

B0= VT8 @2
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J. P. Morgan recommends using (2.2) with A = 0.97 to forecast the
monthly (t = 25) volatility of aggregate return. The Bank for Inter-
national Settlements {Basle Committee on Banking Supervision,
1995) suggests using (2.2) for the capital requirement of a holding
period of 10 days. In fact, Wong and So (2000) showed that for the
IGARCH(1,1) model defined similarly o (2.1), the square-root
rule (2.2) holds. Beltratti and Morana {1999) employed the square-
root rule with GARCH models to daily and half-hourly data. By
iterating (2.1), it can be easily seen that

8=-0 kM2 s+ ] @3)

This is an example of exponential smoothing in a time domain
(see Fan and Yao, 2003). Figure 1 depicts the weights for several
choices of A.

Exponential smoothing can be regarded as a kernel method
that uses the one-sided kernel Ky(x) = b"I(x > 0) with b < 1. Assum-
ing E(r:|€4-1) =0, then o = E(r? | Q). The kemel estimator of
of = E(rf Q1) is given by

.f_.__j
g TR0t BE b
- t

O =

i

K=y gy

where 1 is the bandwidth (see Fan and Yao, 2003}, It is clear that
this is exactly the same as (2.3) with A = B,

Exponential smoothing has the advantage of gradually, rather
than radically, reducing the influence of remote data points. How-
ever, the effective number of points used to compute the local
average is hard to quantify. If the one-sided uniform kernel
Ky(x) = [0 < x £ 1] with bandwidth I, is used, then it is clear that 1,
data points have been used to compute the local average. Accord-
ing to the equivalent kernel theory (Section 5.4 of Fann and Yao,
2003), the kernel estimator with a kemel function K; and a
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Figure1  Weights for the exponential smoothing with several
parameters and the weights of their corresponding

equivalent uniform kernels
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Notes: Left panel, solid curve: A = 0.94;
left panel, dashed curve: A = 0.97;
right panel, solid curve: & = 0.90; and
right panel, dashed curve: A =0.99.

bandwidth b and the kernel estimator with a kernel function K
and a bandwidth h; conduct approximately the same amount of
smoothing when

hy = oKy /oKy,
where

1/5

oK) = {L uzK(u)du} {f Kz(u}du}
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It is clear that a(Ky) =3"*=1.5518 and that the exponential
smoothing corresponds to the kernel smoothing with Ki(x)
=AT(x > 0) and ;= 1. Hence, it uses effectively

hy = 1.5518/a(Ky).

Table 1 records the effective number of data points used in the
exponential smoothing.
Assume now the model

e = O, (2.4)

where & is a sequence of independent random variables with a
mean of 0 and a variance of 1. It is well-known that the kernel
method can be derived from a local constant approximation (Fan
and Gijbels, 1996). Assuming that ¢, = 8 for 1 in a neighborhood of
apoint?, ie.

ry=0g, foru=t (2.5)
then the kernel estimator or, specifically, the exponential smooth-

ing estimator (2.1) can be regarded as a solution to the local
least-squares problem:

-1
DGR R A =0

FEry

where A is a decay factor (smoothing parameter) that controls the
size of the local neighborhood (Figure 1).

Table 1  Effective number of data points used in the
exponential smoothing

Parameter . 0.90 091 0.92 0.93 0.94 0.95 096 097 098 0.99

Effective 22.3 249 28.2 324 38.0 458 576 772 1164 2340
number iz
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From the above function approximation point of view, the J.
P. Morgan estimator of volatility assumes that, locally, the return
process follows the model (2.5). The model can, therefore, be
regarded as a discretized version of the geometric Brownian mo-
tion with no drift dlog(S,) = 8dW,, for u around t or

dlog(S) = O)dW, , @.7)

when the Hme unit is small, where W, is the Wiener process.

2.2 Semiparametric Models

The implicit assumption of J. . Morgan's estimation of volatility
is the local geometric Brownian motion on stock price dynamics.
To reduce a possible modeling bias and to enhance the flexibility
of the approximation, we enlarge the model (2.7) to the following
semiparametric time-dependent mode] :

dlog(S,) = 8)SE dw, , 2.8)

allowing volatility to depend on the value of the asset, where 8(u)
and B(u) are the coefficient functions. When f(u) =0, the model
reduces fo (2.7). This time-dependent diffusion model was used
for interest rate dynamics by Fan et al. (forthcoming). It is an
extension of the time-dependent models previously considered,
among others, by Hull and White (1990), Black, Derman and Toy
(1990}, and Black and Karasinski (1991) and the time-independent
model considered by Cox, Ingersoll and Ross (1985) and Chan et
al. (1992). Unlike the yields of bonds, the scale of {S,} can be very
different over a large time period. However, the model (2.8) is
used locally, rather than globally.

Motivated by a continuous-time model (2.8), we model the
return process at the discrete time as

ru=0)SE% g, (2.9)
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where g, is a sequence of independent random variables with a
mean of 0 and a variance of 1. To estimate the parameters 8(x) and
B(w), the local pseudo-likelihood technique is employed. For each
giventandu<tina neighborhood of time £, the functions B(u)
and B(x) are approximated by constants:

8(1) =8, Pw)=0.
Then, the conditional log-likelihood for 7, given 5.1 is

2
T

- lo 28’5 ,
g{ u 1) 29 5’2‘91
when g, ~ N(0,1). In general, the above likelihood is a pseudo-
likelihood. Dropping the constant factors and adding the pseudo-
likelihood around the point f, we obtain the locally weighted
pseudo-likelihood
-1

l(el B) = E

fre—oo

” (2.10)
-1~ r
10g{8 SHEy 4o 82526 A

-1

where A < 1 is the decay factor that makes this pseudo-likelihood
use only the local data [see Figure 1 and (2.6)]. Maximizing (2.10)
with respect to the local parameters 6 and f yields an estimate of
the local parameters 8(f) and 8(t). Note that for a given B, the
maximum is achieved at

82, By=(1 - ?»)E?J““? S

jrzso

Substituting this into (2.10), the pseudo-likelihood 4B(, B), B) is
obtained. This is a one-dimensional maximization problem, and
the maximization can easily be obtained by, for example, search-
ing [ over a grid of points or by using other, more advanced,
numerical methods. Let B(t) be the maximizer. Then, the es-
timated volatility for a one-period return is
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82 = Bp) 520 (2.11)

[

where é(t) = @(t, @{f}). In particular, if we let §(f) = 0, the model
(2.9) becomes the model (2.7) and the estimator (2.11) reduces to
the J. P. Morgan estimator (2.3).

Qur method corresponds to time-domain smoothing, which
uses mainly the most recent data. There is also a large literature
that postulates models on Var(ry| Fi.q) = g(ts1, =, 7¢-p)- This cor-
responds to the state-domain smoothing, using mainly the histori-
cal data to estimate the function g. See Engle and Manganelli
(1999), Yang, Hardle and Nielsen (1999), Hérdle and Yatchew
(2002) and Fan and Yao (2003). A combination of both time-
domain and state-domain smoothing for volatility estimation is
an interesting direction for future research.

2.3 Choice of Decay Factor

The performance of volatility estimation depends on the choice of
decay factor A. In the J. P. Morgan RiskMetrics, A = 0.94 is recom-
mended for the estimation of one-day volatility, while A = 0.97 is
recommended for the estimation of monthly volatility. In general,
the choice of decay factor should depend on the portfolio and
holding period, and should be determined from data.

Our idea is related to minimizing the prediction error. In the
current psendo-fikelihood estimation context, our aim is to maxi-
mize the pseudo-likelihood. For example, suppese that we have
observed the price process S, f=1,-,T. Note that the pseudo-
likelihood estimator &; depends on the data up to time ¢ — 1. This
estimated volatility can be used to predict the volatility at time .
The estimated volatility &7 given by {2.11) can then be compared

with the observed volatility 77 for the effectiveness of the estima-

tion. One way to validate the effectiveness of the prediction is to
use square prediction errors
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T

PEQ) =3, (1} - 87, &1
=Ty

where Ty is an integer such that 8%0 can be estimated with
reasonable accuracy. This avoids the boundary problem caused
by the exponential smoothing (2.1) or (2.3). The decay factor A can
be chosen to minimize (2.12). Using the model (2.9) and noting
that 6; is Q,.; measurable, the expected value can be decomposed
as

T T (2.13)
EPEM)} = Y, Eof - 6D%+ ¥, E(ri -
t=Ty =Ty
Note that the second term is independent of A. Thus, the point of
minimizing PE(A) is to find an estimator that minimizes the mean-
square error

T
Y E(o} - 8%

t=Ty

The question naturally arises why square errors, rather than
other types of errors, such as absolute deviation errors, should be
used in (2.12). In the current pseudo-likelihood context, a natural
alternative is to maximize the pseudo-likelihood defined as

T 2.14
PLA) ==Y (logbi + 1i/8)), @1

compared to (2.10). The likelihood function is a natural measure of
the discrepancy between r; and 8; in the current context, and does
not depend on an arbitrary choice of distance. The summand in
(2.14) is the conditional likelihood, after dropping constant terms,
of r; given 5;.; with unknown parameters replaced by their es-
timated values. The decay factor A can then be chosen to maximize
(2.14). For simplicity in later discussion, we call this procedure the
Semiparametric Estimation of Volatility (SEV).
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2.4 Choice of Adaptive Smoothing Parameter

The above choice of decay factor remains constant during the
post-sample forecasting. It relies heavily on past history and has
little flexibility to accommodate changes in stock dynamics over
time. Therefore, in order to adapt automatically to changes in
stock price dynamics, the decaying parameter A should be
allowed to depend on the time t. A solution to such problems has
been explored by Mercurio and Spokoiny (forthcoming) and
Hardle, Herwartz and Spokeiny (forthcoming).

To highlight possible changes of the dynamics of {54, the
validation should be localized around the current time £. Let kt be
a period for which we wish to validate the effectiveness of the
volatility estimation. The pseudo-likelihood is then defined as

-1
PLA, B =— Y (logh? + 11/67). (2.15)

i fwdt

Let if maximize (2.15). In our implementation, we use i = 2{,
which validates the estimates in a period of about one month. The
choice of }vt is variable. To reduce this variability, the series [)Lf}
can be smoothed further by using the exponential smoothing:

Ae=bApg +(1-b) he. (2.16)

In our implementation, we use & = 0.94.

To sum up, mA order o estimate the volatlhty 8, we first
compute (G,} and {A ,{,\} up to ime f -1 and obtam ,'&f by minimiz-
ing (2.15) and then A; by (2.16). The value of A; is then used in
{2.10) to estimate the local parameters G(t} and B(t) and hence the
volatitity &7 using (2.11). The resulting estimator will be referred
to as the Adaptive Volatility Estimator (AVE).
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The techniques in this section and in Section 2.3 apply directly
to the J. P. Morgan type of estimator (2.1). They allow for different
decay parameters for different portfolios.

2.5 Numerical Results

In this section, the newly proposed procedures are compared by
using three commonly-used methods: J. P. Morgan’s RiskMetrics,
the historical simulation and the GARCH model using the Quasi-
maximum likelihood method (denoted by “GARCH"). See Engle
and Gonzalez-Rivera (1991) and Bollerslev and Wooldridge
(1992). For the estimation of volatility, the historical simulation
method is simply defined as the sample standard deviation of the
return process for the past 250 days. For the newly proposed
method, we employ the semiparametric estimator (2.11) with A =
0.94 (denoted by “Semipara”); the estimator (2.11) with A chosen
by minimizing (2.12) (denoted by “SEV”}); a/\nd the estimator (2.11)
{denoted by “AVE”) with the decay factor A; chosen adaptively as
in (2.16).

To compare the different procedures for estimating the
volatility with a holding period of one day, eight stock indices and
two simulated data were used together with the following three
performance measures. For other related measures, see Davé and
Stahl (1997). For holding period of one day, the error distribution
is not very far from normal.

Measure 1: Exceedance Ratio (ER) against Confidence Level

This measure counts the number of events for which the loss of
assets exceeds the loss predicted by the normal model at a given
confidence . With estimated volatility, under the normal model,
the one-day VaR is estimated by & ()5, where oY) is the o
quantile of the standard normal distribution. For each estimated
VaR, the ER is computed as
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T4n
ER=u"Y Ir < ® Y6y,

t=T+1

for a post sample of size n. This gives an indication of how effec-
tively volatility can be used to estimate a one-period VaR. Note
that the Monte Carlo error for this measure has an approximate
size {a(l - oe)/n}m, even when the true o; is used. For example,
with ¢t = 5% and »n = 1000, the Monte Carlo error is around 0.68%.
Thus, unless the post-sample size is large enough, this measure
has difficulty in differentiating between various estimators due to
the presence of large error margins.

Measure 2: Mean Absolute Deviation Error (MADE)

To motivate this measure, let us first consider the mean-square
errTors:

T+n

PE=n""Y, (rf - &)
t=T+1

Following (2.13), the expected value can be decomposed as

T+n T+n
EPE)=n" Y E(c} ~ 6 + 0™t Y Erf - o1)-
#=T+1 t=T+1

Note that the first term reflects the effectiveness of the estimated
volatility while the second term is the size of the stochastic error,
independent of estimators. As in all statistical prediction
problems, the second term is usually of a larger order of mag-
nitude than the first term. Thus, a small improvement on PE could
mean a substantial improvement over the estimated volatility.
However, due to the well-known fact that financial time series
contain outliers due to market crashes, the mean-square error is
not a robust measure. Therefore, we will use the MADE:
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T4n
MADE=n"Y [ -67 |.
t=T+1

Measure 3: Square-root Absolute Deviation Error (RADE)

An alternative variation to MADE is the RADE, which is defined
as

T+
RADE=n"% || WV%%, .
t=T4]

The constant factor comes from the fact that Elg| = \!—% for
T
g~ N(0,1).

Measure 4: Test of Independence

A good VaR estimator should have the property that the sequence
of the evenis exceeding VaR behaves like an ii.d. Bernoulli dis-
tribution with a probability of success o. Engle and Manganelii
(1999) gave an illuminating example showing that even a bad VaR
estimator can have the exceedance ratio c.

Let L= I(r, < ® {x)8;) be the indicator of the event in which
the return exceeds the VaR. Christoffersen {1998) introduced the
likelihood ratio test for testing independence and for testing
whether the probability Pr(f;= 1) = o.

Assume {I] is a first~order Markovian chain. Let (o
=Pr(li=jili1=1) ¢ = 0,1 and j = 0,1) be the transition probability
and n;; be the number of events transferring from state 1 to state j
in the post-sample period. The problem is to test

Hy:mpg=myp=T, Myy=nyy=1-n

Then, the maximum likelihood ratio test for independence is
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ARy Affgr Al Ay 2.17
oo o1 Rgo Ra ( )

LR1 =2 log| —o—2—1
A (1 —-my"

where ﬁ:f] = ?’I,‘f/{ﬂf}' + ﬂg}lmj), Ry = My “+ 1111,', and 'ﬁ, = TIO/(T’IU + n;). The

test statistic is a measure of deviation from independence. Under

the null hypothesis, the test statistic LR1 is distributed ap-
: . 2 .

proximately according to X7 when the sample size is large. Thus,

reporting the test statistic is equivalent to reporting the p-value.

Measure 5: Testing against a Given Confidence Level

Christoffersen (1998) applied the maximum likelihood ratio test to
the problem

Hy:Pi=1)=a wversus H:P(,=1)=«C

under the assumption that {I,} is a sequence of ii.d. Bemmoulli
random variables. The test statistic is given by

Mgrr A (2.18)
LR2 =72 log TE_@__?EL

C(.”u(]. - Ot)ﬁl

which follows the yi-distribution when the sample size is large.
Again, the reported p-value is a measure of the deviation from the
null hypothesis. This measure is closely related to Measure 1.

Example 1: Stock Indices

We first apply the five volatility estimators to the daily returns of
eight stock indices (Table 2). For each stock index, the in-sample
period terminated on December 31, 1996 and the post-sample
period was from January 1, 1997 to December 31, 2000 (n = 1014).
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Table 2 Comparisons of several volatility estimation methods
Country Index  In-sampleperiod Post-sampleperiod
Australia AQRD 1988-1996 1997-2000
France CAaC40 1990-1996 1997-2000
Germany DAX 1990-1996 1997-2000

Hong Kong HsI 1588-1996 1997-2000
Japan Nikkei 225 1988-1996 1997-2000
United Kingdom  FTSE 100 1988-1996 1997-2000
United States S&P 500 1988-1996 1997-2000
United States Dow Jones 1988-1996 1997-2000

The results are summarized in Table 3. The initial period where
o, with # < Ty is not estimated is set to Ty = 250.

From Table 3, the two smallest MADE and RADE are almost
always achieved by using semiparametric methods and GARCH
methods. In fact, SEV, AVE and GARCH methods are the three
best methods in terms of MADE and RADE. Of these, the semi-
parametric method with a decay parameter (SEV) that is selected
automatically by the data performs the best. It achieved the two
smallest MADE in a total of eight out eight times, and the two
smallest RADE four out eight times. This demonstrates that it is
important to allow the algorithm to choose decay factors accord-
ing to the dynamics of stock prices. The AVE and GARCH
methods perform comparably with the SEV in terms of MADE
and RADE. The GARCH method slightly ouiperforms the AVE
according to MADE and RADE measures, but AVE outperforms
the GARCH method for other measures such as ER and p-value
from independence. This demonstrates the advantage of using a
time-dependent decay parameter that adapts automatically to any
changes in stock price dynamics. These results also indicate that

0.80

Table 3  Results of the comparisons of several volatility
estimation methods
Index Method ER MADE RADE p-value p-value
x10% x10% (10" (indep) (ER=5%)
ACRD Historical 523 0.850 4330 0.01* 0.76
RiskMetrics 4.93 (0.848  4.250 0.01* 0.92
Semipara  4.93 (.840  4.231 0.01* 0.92
SEV 523 0.803  4.300 0.02 0.76
AVE 493 0835 4213 0.00* 0.92
GARCH 552 0786  4.168 0.12 0.46
CAC40 Historical 6.16 2177 7272 0.11 0.10
RiskMetfrics 6.36 2,157  7.102 0.33 0.06
Semipara 655 2150  7.09% 0.20 0.03
SEV 645  2.077  7.4035 0.17 0.04
AVE 636 2138  7.069 091 0.06
GARCH 8§24 1931  6.883 0.20 0.00
DAX Historical 655 2507 7814 0.18 0.03
RiskMetrics 546  2.389  7.370 0.59 0.51
Semipara 556 2389 7342 0.90 0.43
SEV 6.06 2368 7457 0.03 G.14
AVE 596 2377  7.330 .90 G.18
GARCH 7.94 2200 7174 0.78 0.00%
HSI Historical 608 5710 11.167 0.00% 0.12
RiskMetrics 599 5.686 10.818 0.007 0.15
Semipara 589 5567 10.685 .00~ 0.19
SEV 561  5.523 10743 0.00* 6.37
AVE 655 5.578  10.686 .00* 0.03
GARCH 730 5293  10.565 ¢.03 0.00%
Nikkei 225 Historical 578 2567 7.824 0.90 0.27
RigkMetrics 578 2526  7.656 0.35 0.27
Semipara 609 2507 7631 0.48 0.13
SEV 5.68 2457  7.610 0.68 0.34
AVE 6.19 2479  7.565 0.25 0.10
GARCH 588 2563  7.693 0.22



20 Jianging Fan and Juan Gu

Table3  Results of the comparisons of several volatility
estimation methods (continued)

index Method ER MADE RADE p-value p-value
x10% (x10% (x107%) (indep) (ER=5%)}
FISE 100  Historical 6.83 1.369 576l 0.05 0.01
RiskMetrics 5.94 1.342 5594 (.45 0.18
Semipara 6.24 1328  5.567 0.58 0.08
SEV 693 1299 5598 0.02 0.01
AVE 6.04 1328 5571 0.90 0.14
GARCH 743  1.256 5.497 G.78 g.00*
S5&P500  Historical 6.34 1613 6027 0.65 0.06

RiskMetrics 555 1.647  6.056 0.62 0.44
Semipara 555 1.620 5995 0.62 0.44

SEV 585 1539  5.888 046 0.23
AVE 575 1611 5984 .51 0.29
GARCH 446 1.689 6163 0.89 0.43
Dow Jones Historical 615 1493  5.840 0.25 0.11
RiskMetrics 5.65 1.507 5784 0.56 0.35
Semipara 575 1489 5739 0.16 0.29
SEV 575 1460 5.743 0.51 0.29
AVE 585 1480 5731 0.90 0.23

GARCH 446 1575 5960 0.68 0.43

Notes:  GARCH refers to the GARCH(L,1) model. Numbers with
bold face are the two smallest.

* means statistically significant at the 1% level.

our proposed methods for selecting decay parameters are effec-
tive. As shown in (2.13), both measures contain a large amount of
stochastic errors. A small improvement in MADE and RADE
measures indicates a large improvement in terms of estimated
volatilities.

5
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Presented in Table 3 are the p-values for testing independence
and for testing whether the ER is significantly from 5%. Since the
post-sample size is more than 1000, we consider whether the
deviations are significant at the 1% level. Most methods have a
right ER, except for the GARCH method which tends to underes-
timate the risk. However, the GARCH method performs par-
ticularly well in terms of testing against independence. Its
corresponding p-vaiues tend to be large. Other methods perform
reasonably well in terms of independence.

As an illustration, Figure 2 presents the estimated volatilities
for six stock indices in the post-sample period by using SEV and
AVE. The parameters B’s in model (2.11) depend on the stock
prices and can vary substantially. Since together they predict the
volatility, it is more meaningful to present the volalility plots. The
volatility predicted by the AVE is more variable than that by the
SEV.

Example 2: GARCH(L1) Model

Next, consider simulations from the GARCH model:
e O, crf‘ =Cc+ aof_1 + brf_l ,

where & is the standard Gaussian noise. The first two hundred
random series of length 3000 were simulated using the parameters
¢ =0.00000038, 2 = 0.957513 and b = 0.038455. These parameters are
from the GARCH(L1) fit to the S&P 500 index from January 4,
1988 to December 29, 2000. The parameter a is reasonably close
to the A = (.94 of the RiskMetrics. The second two hundred time
series of length 3000 were simulated using the parameters ¢y =
0.000009025, 2 = 0.9 and b = 0.09. The choice of ¢ is to make the
resulting series have approximately the same standard deviation
as the returns of the S&P 500. The first 2000 data points were used
as the in-sample period, namely T = 2000, and the last 1000 data
points were used as the post-sample, namely 7 = 1000. The perfor-
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Predicted volatility in the post-sample period for

Figure 2
several indices
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mance of six volatility estimators of the two models is shown in
Tables 4 and 5, respectively.

The performance of each volatility estimator can be sum-
marized by using the average and standard deviation of MADE
and RADE over 200 simulations. However, MADE and RADE
show quite a large variability from one simulation to another. In
order to avoid taking averages over different scales, for each simz-
lated series we first standardize the MADE using the median
MADE in that series of the six methods and then average them
across 200 simulations. The results are presented as the column
“score” in Tables 4 and 5. In addition, the frequency of each
method that achieved the best MADE among 200 simulations was
recorded, and is presented in the column “best.” Further, the
frequency of each volatility estimator that achieved the two smal-
lest MADE in each simulation was also counted. More precisely,
among 200 simulations, we computed the percentage of a method
that performed the best as well as the percentages of the methods
ranked in the top two positions. The results are presented in the
column “best two” of Tables 4 and 5. For clarity, we omit similar
presentations using the RADE measure — the results are nearly
the same as with the MADE. The numbers of rejections of null
hypotheses are recorded in the columns “reject times (indep)” and
“reject times (ER = 5%).”

Using MADE or RADE as a measure, AVE and SEV consis-
tently outperform other methods. GARCH performs quite
reasonably in terms of MADE for the second GARCI(1,1) model,
but not for the first GARCH(1,1) model. Since the sum of the
parameters o and b is close to one, the parameters in GARCH(L1)
cannot be estimated without a large variability. This results in
large variances in the computation of a standardized MADE. In
terms of ER or Measure 5, which are closely related, RiskMetrics
performs consistently well. Since the models used in the simula-
tions are all stationary time-homogeneous models, AVE does not
have much of an advantage while SEV performs better in terms of
ER and Measure 5. Except for the historical simulation methodg, all
methods behave well in the independence tests {Measure 4).
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Comparisons of several volatility estimation methods: the first GARCH(1,1) model

Table 4

Tianging Fan and Juan Gu

Reject times  Reject times

Best two

Best

Score
(x10%)

103.48 (4.87)
100.17 (0.49)

ER
(x10™
5.32 {0.92)
5.43 (0.56)
5.67 (0.61)
5.44 (0.66)
5.94 (0.63)
4.41 (0.86)

Method

(ER=5%)

(indep)

29

14
21

18

13.5
2
11

Historical

11.5
35

RiskMetrics
Semipara

SEV

20
17
53

18
15
12
23

99.81 (0.42)
99.73 (0.50)
99.30 {0.58)
103.67 {4.97)
The values in the brackets are their corresponding standard deviations.

51.5
75

16.5
51

AVE

42

6

GARCH(1,1)

Note:

Comparisons of several volatility estimation methods: the second GARCH(1,1) model

Table 8

Score Best Best two Reject times  Reject times

ER
(x10%)
5.58 {0.98)
5.54 {0.60)

Method

{ER=5%)

(indep)

(x107%
109.64 (9.92)

49
14
30
33
63
14

65
14
14
15

3.5
i

Historical

10.5
47

160.30 (0.60)

RiskMetrics
Semipara

SEV

115
14
37
33

99.75 (0.37)
99.73 (0.42)
99.53 (0.69)

100.67 (2.65)

5.72 (0.62)
5.75 (0.62)
6.06 (0.61)

41

11
15

60.5
37

The values in the brackets are their corresponding standard deviations.

AVE

5.03 {0.78)

GARCH(1,1)
Note:

Semiparametric Estimation of Value-nt-Risk 25

Example 3: Continuous-time Stochastic Volatility (SV) Model

Instead of simulating the data from GARCH(1,1) models, we
simulate data from a continuous-time diffusion process with the
SV:
dlog(Ss) = adt + o, dW;, dcf =x(0 - csf)dt + 0 dB;,

where W; and B; are two independent standard Brownian mo-
tions. See, for example, Barndorff-Nielsen and Shephard (2001,
2002). The parameters are chosen as =0, x = 0.21459, 9 = (.08571,
w = 0.07830, following Chapman and Pearson (2000) and Fan and
Zhang (2003). Two hundred series of 3000 daily data were simu-
lated using the exact simulation method (e.g., Genon-Catalot,
Jeantheau and Larede, 1999; Fan and Zhang, 2003).

This simulation tests the extent to which the six volatility
estimators perform when the underlying dynamics differ from
GARCH(1,1) and our semiparametric models. The same perfor-
mance measures as those in Example 2 are used. Table 6 sum-
marizes the results. Similar conclusions to those in Example 2 can
be drawn. The AVE and SEV consistently outperform the Risk-
Metrics using MADE as a measure, even when the model is mis-
specified. This is due, mainly, to the flexibility of the
semiparametzic model in approximating the true dynamics, in
addition to the data-driven smoothing parameter that enhanced
the performance. The historical simulation method performs bet-
ter in this example than those in the previous example. This is
partially due to the fact that the SV model produces more volatile
returns. Hence, a larger smoothing parameter in the historical
simulation method gives it some advantages.

3. Estimation of Quantiles

The conditional distribution of the multiple period return R, . does
not necessarily follow a normal distribution. Indeed, even under
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- the IGARCH(1,1) model (2.1} with a normal error distribution in
q i (2.4}, Wong and So (2000) showed that the conditional distribution
ERIE 8 e 8 88 Ry, given &, is not normal. This was also illustrated numerically by
28 | Lucas (2000). Thus, a direct application of @ (o) 8y, will
= provide an erroneous estimate of the multiple period VaR, where
N 81411 15 an estimated multiple period volatility of returns. In order
g = to provide empirical evidence of the non-normality of the
EZ|lw =g =2 ® o multiple period returns, the distributions R/ &,T for the S&P
.gz\é 500, H51, Nikkei 225, and FTSE 100 indices are sown in Figure 3.
~ The multiple period volatility is computed using the J. P. Morgan
= RiskMetrics: {’:‘rﬂ;xx\’%—&m. The densities are estimated by the
g g kernel density estimator with the rule of thumb bandwidth
;:‘ % F 2 8RB h=1.06n""%, where n is the sample size and s is the sample
w M standard deviation (taken as 1 to avoid outliers, since the data
-‘é“ have already been normalized). See, for example, Chapter 2 of Fan
—% . g and Gijbels (1996). It is evident that the one-period distributions
£ |2 g o ° g g "g are bas1ca1'1y s‘ymrvnei'rlc and haje &eamer tails than the standa?d
‘g & normal distribution. The deviations from normal are quite
= & substantial for multiple period return processes. Indeed, the
,g 1 E distribution is not centered around 0; the centered normal
8 . § % g § § § g distributions (using medians of the data as the centers and 1 as the
g %"’% : : ; ;': : = g standard deviation) fit the data better.
= AX|lS v & v o NiBE
s EEEEEIE
S = =S E e .
"g T 3.1 Nonparametric Estimation of Quantiles
> =
§ o~ T2 8x @ § § i As discussed previously, the distributions of the multiple period
C IEg|E e e e L Doy ' turns deviate from normal. Their distributions are generall
2 |23 983 8 S|4 | e . g Y
'go? B 6 18 18 8 g unknown. In f.a.ct, Dn?boid et al. (1998} r:eported that converting
& B one-day volatility estimates to 1-day estimates by a scale factor
% E vt is inappropriate and produces overestimates of the variability
8 - % of long time horizon volatility. Danielsson and de Vries (2000)
g B ol & suggested using the scaling factor 7%, with § being the tail index
A g § 5 5 of extreme value distributions. Nonparametric methods can
o | ¥ £ 3 E » m % B naturally be used to estimate the distributions of the residuals and
S Z 2 & B 3: U zo correct the biases in the volatility estimation (the issue of whether
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Figure3  Estimated densities of the rescaled multiple period
returns for several indices

Distribution for S&P 506 1-day return Distribution for HSI 1-day return
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=R . 21
8 4 2 [ 2 4
Notes: Solid curves: estimated densities by using the kernel density
estimator;

dashed curves: standard normal densities;
thick dashed curves: normal densities centered at the
median of the data with a standard deviation of 1.

Semiparametric Estimation of Value-at-Rigk 29

the scale factor is correct becomes irrelevant when estimating the
distribution of standardized return processes).

Let 8y, be an estimated T-period volatility and £, = R, /5y be
aresidual. Denote by Ey\(a,'z), the sample o-quantile of the residuals
{ gtﬁ, t=To+1,,T~1 } This yields an estimated multiple period
VaR of VaRy,;, = §(0,7)8x ;- Note that the choice of constant fac-
tor §(c,7) is the same as selecting the constant factor ¢ such that the
difference between the ER of the estimated VaR and the con-
fidence level is minimized in the in-sample period. More precise-
ly, §(c,7) minimizes the function

T-1
ER()= (T =1=To+ D)7 Y, KRui < Gprre) ~
=T,

The nonparametric estimates of quantiles are robust against
the mis-specification of parametric models and insensitive to a
few market movements for a moderate o. Yet they are not as
efficient as parametric methods when parametric models are cor-
rectly given. To improve the efficiency of nonparametric es-
timates, we assume that the distribution of { ’ém} is symmetric at
about the point 0. This implies that

glo, ) =—g(l - o1y,

where g(c, T} is the population quantile. Thus, an improved non-
parametric estimator is

ety =27 {Blon) - 41 - 1) ). @.1)

Dencte by

1 A 1
VaRgi-]l;z = (OL,"E){ ]8‘&-1;5

the corresponding estimated VaR. It2 iéa not difficult to show that
the estimator §#"(0,1) is a factor of “= that is as efficient as the
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simple estimate g(o,1) for o < 0.5 (see Appendix A1 for deriva-
tions).

When the distribution of the standardized return process is
asymmetric, (3.1) will introduce some biases. For a moderate ¢
where g(c,T) = —¢(1 - o,1), the biases are offset by the variance
gain. As shown in Figure 3, the asymmetry for returns is not very
severe for a moderate o. Hence, the gain can still be materialized.

3.2 Adaptive Estimation of Quantiles

The above method assumes that the distribution of Eém] is sta-
tionary over time. To accommodate possible nonstationarity fora
given time f, we may only use the local data { g imt—1T—h,
t-h+T1f— 'r} This model was used by several authors, in-
cluding Wong and So (2000) and Pant and Chang (2001). Let the
resulting nonparametric estimator (3.1) be qr (or. 7). To stabilize
the estimated quantiles, we further smooth thzs quantile series to
obtain the adaptive estimator of quantiles gt Bro,m) via the ex-
ponential smoothing:

o, = b5 (o) + (1 - b)alo,) . (3.2)

In cur implementation, we took 1 = 250 and b = 0.94.

3.3 Parametric Estimation of Quantiles

Based on empirical observations, one possible parametric model
for the observed residuals { ﬁtﬁ, te=Te+ 1, T~71 } is to assume
that the residuals follow a scaled t-distribution.

ﬁt,‘t = AE: ; (3‘3}

where & ~ f,, the Student’s {~distribution with degree of freedom

v. The parameters A and v can be obtained by solving the follow-
ing equations that are related to the sample quantiles:
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(0, T) = A0, V)

’

o, T) = At(ap,V)

where #(c,v) is the a quantile of the f~distribution with degree of
freedom v. A better estimator to use is q[ I(oc .0 in (3.1). Using the
1mproved estimator and solving the above equations yield the
estimates ¥ and & as follows:

Hoo¥) _iem 4 4%ow) 34

Koy V) 4% (e Ko, V)

Hence, the estimated guantile is given by

(o, g™ l(am) 3.5)
t(al,v)

a7y = At V) =

and the VaR of a T-period return is given by
VaREL, = 5%, )8k 1z - (3.6)

In the implementation, we take ¢¢; = 0.15 and o= 0.35. This choice
is near optimal in terms of statistical efficiency (Figure 4).

The above method of estimating quantiles is robust against
outliers. An alternative approach is to use the method of moments
to estimate parameters in (3.3). Note that if € ~ £, with v > 4, then

2

3v
Ee? = Wz,a.nd Ee'= __m(v -8

The method of moments yields the following estimates
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Figure4  The efficacy function g.(¢) for several degrees of
freedom

Efficacy of quantile estimation as a function of

Notes: From solid, the shortest dash to the longest dash: v =2,
v=3,v=5v=10and v=40.
For all vs, the minimum is almost attained at the interval
[0.1,0.2].

$ = (4fis - 608 /(g - 303 (3.7)
h={ fat® - 204 17

-t aj

where ﬁ,j is the jﬂ;z moment, defined as ﬁj =(T-1- T@)"l $=T,41 & 4o

See Pant and Chang (2001) for similar expressions. Using these
estimated parameters, we obtain the new estimated quantile and
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estimated VaR similarly to (3.5) and (3.6). The new estimates are
denoted by 4%(0,7) and VaR¥ ., respectively. That s,

A
Mo =ht(a,9), VarRE = 4"01)8,. .

The method of moments is less robust than the method of
quantiles. The former also requires the assumption that v > 4. We
will compare their asymptotic efficiency in Section 3.4.

3.4 Theoretical Comparisons of Estimators for Quantiles

Of the three methods of estimating quantiles, the estimator
4(0,7) is the most robust method. It imposes very mild assump-
tions on the distribution of 'ém and, hence, is robust against model
mis-specificaton, The two parametric methods rely on the model
(3.3), which could lead to erroneous estimations if the model is

mis-specified. The estimators a[lll @[23 and @Ig] are all robust against

outliers, but §* is not.

In order to give a theoretical study of the properties of the
aforementioned three methods for the estimation of quantiles, we
assumme that {'ém, t=Tg -, T—1T } is an independent random
sample from the density f. Under this condition, for 0 <oy < -~

<gg<l,
Nim{§(oum) - gloun)], 1 <i <k -Es N3, (3.8)

wherem =T 1~ Ty +1, g(o;,7) is the population quantile of f, and
2 = (01’},‘) with

ij = G‘i(l - Oﬂj}/f(‘F(ﬁn’C})f(Q(a;ﬂ))f for ¢ >j and O']‘z' = 0'!']' .
See Prakasa Rao (1987).

To compare this with parametric methods, let us now assume
for a moment that the model (3.3) is correct. Using the result in
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Appendix A.1, the nonparametric estimator %U](oc,'r) follows an
asymptotically normal distribution with a mean of Af(o,v) and a
variance (for 0. <1/2) of

Vil = L=20) @)
T o g (oY m

where f, is the density of the t-distribution with degree of
freedom v given by

v+ 1)/2 2, 12
folx) = VT (v/2) (1+x°/v) .

Since v is an integer, any consistent estimator of v means that
it equals to v with a probability tending to 1. For this reason, v can
be treated as known in the asymptotic study. It follows directly
from (3.8) that the estimator 6[31(01,’5) has the asymptotic normal
distribution with a mean of Af(c:,v) and a variance of

A2i(0,v) 0 (1 ~ 201) (3.10)
2 f (Ko, V) Hou V) m

VZ(ar g, v, A’) =

The efficiency of V; depends on the choice of oy through the
function

ol - 2a)
G0) = gy

Fult(av)y Hav)

The function g,(c) for several choices of v is presented in Figure 4.
1t is clear that the choices of ¢ in the range [0.1, 0.2] are nearly
optimal for all values of v. For this reason, oy = 0.15 is chosen
throughout this paper.

As explained previously, v can be treated as being known.
Under this assumption, as shown in Appendix A.2, the method of
morments estimator 5{4]{0t,'£) is asymptotically normal with a mean
of At(o,v) and a variance of
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W% = Dy (3.11)
V3(0'v Y, }")“?“ ;}(VEZ)C;IV .

Table 7 depicts the relative efficiency of the three estimators. The
nonparametric estimator f:}[}} always performs better than the
parametric quantile estimator 3[2]’ unless the o and v are small.
The former is more robust against any mis-specification of the
model (3.3). The nonparametric estimator %F‘ is more efficient
than the method of moments estimator @m when the degree of
freedom is small; and has reasonable efficiency when v is large.
This, together with the robustness of the nonparamefric estimator
E}m to mis-specification of models and outliers, indicates that our
newly proposed nonparametric estimator is generally preferable
than the method of moments. This finding is consistent with our

empirical studies.

Table 7 Relative efficiency for three estimators of quantiles

o =5% ot=1% o =10%

v oAl Vv VaiVy VsV Va/Vi Va/Vy VW

26.243 1071 oo 0.253 oo 1.708 oo
10.928 1.348 o0 0.394 o 1.873 oo
7117 1.532 o 0.518 o 1.965 oo

5528 1659 1.469 0.621  0.550 2024 1792
4682 1750 1.008 0.706  0.406 2.064 1189
4164 1.820 0.862 0.775  0.367 2.093 0992
10 3381 1952 (Q.729 0.922  0.344 2.3146  0.801
20 2666 2119 0.663 1138 0.356 2210 04691
4 2373 2208  (.647 1.266 0371 2242 0657
100 2214 2263 0.642 1.351  0.383 2261 0641
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In summary, in consideration of the fact that the return series Table 8 Comparisons of the ERs of several VaR estimators

have heavily tails and contain outliers due to large market move- (x10™

ments, and in light of its high statistical efficiency even in

parametric models, the nonparametric estimator @m is the most Index Hoiding  VaR” vaRM vaR™  vapPl varH#

preferred for o = 5%. Among the two parametric methods, the period

method of moments may be preferred because of its high efficien- AORD =10 5.42 355 5.52 2.37 1.28

cy when the degree of freedom is Jarge. =25 552 256 523 1.08 0.99
T=50 1.28 G.10 3.75 0.10 £.00

.. . . , CAC40 =10 3.67 3.67 3.48 3.48 2.88

3.5 Empirical Comparisons of Quantile Estimators et w47 457 47 357 348

We compared, empirically, the performances of three different w50 278 338 248 278 238

metheds for quantile estimation by using the eight stock indices in DAX =10 4.87 4.27 5.06 5.06 4.67

Example 1. To make the comparison easier, the same volatility 1=25 5.66 4.97 5.06 6.95 5.36

estimator to all indices and helding periods was applied. The T =50 407 197 3.77 4.27 3.97

multi-period estimation of volatility in the RiskMetrics is

employed for T = 10, T = 25 and 7 = 50. The estimated quantiles Hst T=10 6.5 449 4.96 552 440
=25 9.17 6.08 8.04 5.89 5.71

o,7) (= 1,2, 3, 4) are used to obtain the estimated VaR. The

effectiveness of the estimated VaR is measured by the ER T=50 711 2.99 5.14 346 3.55

Nikkei 2725 =10 4.97 4,26 5.98 3.65 4.06
. Ten-c , 7=25 659 456 720 446 467
| ER=(n-1)7" 3, l(Rye<VaRey) 7=50 1176 254 1156 822 517
e FISE 100 T=10 4.75 4.06 5.05 3.47 4.96
) ) t=25 3.96 2.48 5.35 317 2.77
in the post-sample period (January 1 / 1997.&_) December 31, 2000 =50 5 &7 048 495 208 9.67
with n = 1014). Note that due to the insufficient number of non-
overlapping t-day intervals in the post-sample period, overlap- S&P 500 =10 377 367 505 238 436
ping intervals are used. This has two advantages: (1) it increases T=25 337 357 505 39 367
the number of intervals by a factor of approximately t and (2) the T=50 2.78 377 595 387 377
res1'11!:s are insensitive to the starting c.tlate‘of the post-sample Dow Jones  t=10 5.06 496 595 377 516
period (not the case for non-overlapping intervals). The con-
T=25 4.86 5.16 7.24 6.653 575

fidence level 1 — & = 95% is used. To compare with the perfor-
mance of the RiskMetrics, we also form VaRtg]m = <I)_1(0L)3f+m. This
follows exactly the recommendations of J. P. Morgan's Risk-
Metrics. The results are presented in Table 8.

=50 3.47 3.87 4.66 3.67 4.07
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To summarize the performance presented in Table 8, we com-
puted the average and standard deviation of the ERs for a holding
period T = 10, 25, 50 for each of the eight stock indices. In addition,
the MADEs from the nominal level o = 5% were also computed.
Table 9 depicts the results of these computations.

For a holding period of 10 days, the adaptive nonparametric
estimator VaR™® has the smallest bias as well as the second-smal-
lest standard deviation, of the five competing methods. The Risk-
Metrics has a comparable amount of biases, yet its variability is
larger. The nonparametric estimator VaRMhas the smallest stand-
ard deviation, though its bias is the third-largest. The adaptive
nonparametric method has, also, the smallest MADE from 5%. For
a holding period of 25 days, the RiskMetrics has the smallest
biases, but its reliability is quite poor. Its variability is ranked third
out of the five competing methods. The overall deviation
(measured by MADE) from the nominal level is, again, achieved

Table 9 Summary of the performance of several VaR
estimators (x107%)

Measure Holding VarRl®  varlM vaRrB  varBl  yarll
period
Average t=10 4.38 4.32 5.13 371 3.86
Standard T=10 091 - 048 0.79 1.12 1.23
MADE T=10 0.63 0.88 0.52 1.43 1.18
Average =25 542 4.24 5.90 4.47 4.05
Standard 1=25 1.85 1.27 1.39 1.97 1.66
MADE T=25 131 1.07 1.18 1.66 1.41
Average T=50 445 2.89 528 3.56 3.20
Standard =50 3.39 127 2.75 2.30 1.55
MADE =50 2.73 21 1.63 2.25 1.85

Semiparametric Estimation of Value-at-Risk 39

by the two nonparametric methods of estimation of quantiles. For
a holding period of 50 days, the variability of the RiskMetrics is,
again, very large. The adaptive nonparametric method is the best
in terms of bias, variance and overall deviation from the target
level of 5%. It is also worthwhile to note that the variability in-
creases as the holding period lengthens. This is understandable,
since the prediction involves a longer time horizon.

The above performance comparisons show convincingly that
the newly proposed nonparametric methods for the estimation of
guantiles outperform the two parametric methods and the Risk-
Metrics.

4. Estimation of Value-at-Risk

We have proposed three new volatility estimators based on the
semiparametric model (2.8). These, together with the J. P. Morgan
RiskMetrics and the GARCH model estimator, give rise to five
volatility estimators. Further, we have introduced four new quan-~
tile estimators, based on parametric and nonparametric models.
These and the normal quantile give five quantile estimators. Com-
binations of these volatility estimators and quantile estimators
yield 25 methods for estimating VaR. To make comparisons
easier, we eliminate a few unpromising combinations. For ex-
ample, our previous studies indicate that the semiparametric
volatility estimator (SVE) with A = 0.94 does not work very well
and that the parametric metheds for quantile estimation do not
perform as well as their nonparametric counterparts. Therefore,
these methods are not considered. Instead, a few promising
methods are considered to highlight the points that we advocate.
Namely, that the decay parameter should be determined by data
and that the time-dependent decay parameter should have a bet-
ter ability to adapt to changes in market conditions. In: particular,
we select the folowing procedures:
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RiskMetrics: Normal quantile and
volatility estimator (2.1)

Nonparametric RiskMetrics (NRM):  Nonparametric quantle @[1}

and (2.1}

Semiparametric Risk Estimator (SRE): Nonparametric quantile a[l
and SVE

Adaptive Risk Estimator {ARE): Adaptive quantile
estirmator ’q\m and AVE

1

GARCH Estimator (GARCH): Normal quantile and

GARCH(1,1} model

The SRE and ARE are included in the study because they are
promising. The former has time-independent decay parameters
and quantiles, while the latter has time-dependent parameters
and quantiles. NRM is also included in our study because of its
simplicity. It possesses a very similar spirit to the RiskMetrics.
GARCH is included because of its popularity in analyzing finan-
cial data.

To compare these five methods, we use simulated data sets
and the eight stock indices. We begin with the simulated data.
Two hundred series of length 3000 were simulated from the con-
tinuous-time 5V model in Example 3. As in Example 2, the first
2000 data were regarded as the in-sample period and the last 1000
data points were treated as the post-sample period. The ERs were
computed for each series for the holding periods 7 = 1, 10, 25 and
50. The results are summarized in Table 10. Using the MADE from
the nominal confidence level 5% as an overall measure, the Risk-
Metrics and ARE are the best performers. One reason for the
RiskMetrics to perform well is that the stochastic noises are
generated from a normal distribution. It is easy to understand that
if the noise does not follow a normal distribution, the RiskMetrics
will not perform well.

We now apply the five VaR estimators to the eight stock
indices depicted in Example 1. As in Example 1 and shown in
Table 2, the post-sample period was from January 1, 1997 to
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Table 10 Summary of the performance of five VaR estimators

Measure Holding RiskMetrics NRM SRE ARE GARCH

period

Average T=1 545 495 499 499 429
Standard T=1 0.55 0.58 066  0.62 2.16
MADE t=1 0.61 047 054 .49 1.81
Average =10 5.19 512 516 512 4.29
Standard t=10 1.60 1.82 1.83 1.75 2.52
MADE =10 1.24 145 1.41 1.37 2.12
Average t=25 5.60 518 518 518 417
Standard 1=25 2.53 2.76 2.80 2.71 3.16
MADE T=25 1.96 2.14 2.16 2.04 2.73
Average T=50 541 541 537 533 4.21
Standard t=50 3.89 3.89 394 377 3.70
MADE T =50 3.07 3.07 3.10 2.88 316
Note: MATDE from the nominal confidence level of 5%.

December 31, 2000. The ERs were computed for each method. The
results are shown in Table 11. To make the comparison easier,
Table 12 shows the summary statistics of Table 11.

Table 12 shows that the ARE is the best procedure among the
five VaR estimators for all holding periods. For the one-period,
SKE outperforms the RiskMetrics, but for the multi-period, the
RiskMetrics outperforms the SRE. NRM improves somewhat on
the performance of the RiskMetrics. For the real data sets, it is
clear that it is worthwhile to use time-dependent methods such as
ARE. Indeed, the gain is more than the price that we have fo pay
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Table 11 Comparisons of the ERs of five VaR estimators
Index Holding RiskMetrics NRM  SRE  ARE GARCH
period
AORD t=1 4.93 4.93 473 523 5.42
T=10 5.42 385 434 473 513
T=25 5.52 325 355 533 493
7= 50 1.28 0.32 128 434 1.38
CAC40 7=1 6.36 645 606 556 8.24
1=10 3.67 3.67 268 328 4.57
=25 447 457 387 387 546
T=50 2.78 338 278 228 3.28
DAX T=1 5.46 546 556 576 7.85
t=10 4.87 4.27 447 447 6.26
T=25 5.66 497 447  5.06 6.95
T=50 4.07 357 348 358 427
HSI t=1 5.89 5.71 627 496 7.30
t=10 6.55 449 543 505 9.17
t=25 9.17 608 795 898 12325
T=50 7.11 2.99 440 515 1123
Nikkei225 t=1 5.78 568 568 527 588
1=10 4.97 426 3% 558 497
T=25 6.59 4.56 396 690 6.65
=50 11.76 254 122 1075 1085
FTSE 100 T=1 5.94 6.04 604  6.14 7.43
=10 4.75 406 39 505 495
=25 3.96 248 297 663 4.65
T=50 2.67 248 238 515 2.87
S&P 500 T=1 5.55 525 515 496 446
=10 3.77 367 387 535 278
t=25 3.17 357 347 496 1.98
T=50 278 3.77 436  6.64 2.28
Dow Jones T=1 5.65 5.65 5.65 5.65 4.96
=10 5.06 496 496 585 417
T=25 4.86 5.16 446 615 437
T=50 3.47 3.87 427 516 337
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Table 12  Summary of the performance of five VaR estimators

Measure  Holding RiskMetrics NRM ~ SRE  ARE GARCH

period
Average Ta=] 571 5.65 5.64 5.44 .44
Standard T=1 0.42 0.46 0.51 0.41 1.43
MADE 1=1 0.73 0.66 0.71 0.45 1.59
Average T=10 4.88 4.15 4.21 4,92 5.25
Standard t=10 0.91 0.44 0.82 080 1.86
MADE 1= 10 0.63 0.85 050 055 1.14
Average T=20 543 4.33 434 596 591
Standard t=25 1.85 1.16 1.54 1.60 2.99
MADE T=25 1.31 0.98 1.40  1.30 1.93
Average T=50 4.49 2.92 3.02 5.38 4£.94
Standard T=50 3.39 1.17 1.32 2.52 3.86
MADE T=50 2.73 2.08 1.98 1.58 3.08

for the adaptation to changes in market conditions. The results
also provide stark evidence that the quantile of standardized
returns should be estimated and the decay parameters should be
determined from data. :

Table 13 shows the results for hypothesis testing, as in the
performance measures 4 and 5. The results are shown for a one-
day holding period. As indicated before, for a multiple-day VaR
prediction, overlapping intervals were used. Hence, hypothesis
testing could not be applied. Except for the HSI, there is little
evidence against the hypothesis of independence and the
hypothesis that ER = 5%. The p-values for AORD also tend to be
small.
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Table 13 Comparisons of the ERs and test results of five
VaR estimators
Index Holding period RiskMetrics NEM SRE ARE GARCH
AQRD ER 4.93 493 473 523 542
p-value {indep) 0.01 001 001 0.02 0.12
p-value (ER=5%) (.92 092 071 076 Q46
CAC40 ER 6.36 645 606 556 8.24
p-value (indep) 0.33 037 080 0612 036
p-value (ER=5%)  0.06 0.04 014 043 ¢.o0*
DAX ER 5.46 546 55 576 7.85
p-value (indep) 0.59 059 090 016 0.78
p-value (ER=5%} 0.51 051 043 0.28 0.00*
HsI ER 5.99 571 627 456 7.30
p-value (indep) 0.00* 0.00*  0.00* 000 0.03
p-value (ER=5%)  0.15 0.30 0407 09 0007
Nikkei 225 ER 5.78 568 568 527 588
p-value {(indep) 0.35 632 032 G619 0.80
p-value (ER=5%)  0.27 034 034 071 022
FISE 100 ER 5.94 604 604 614 743
p-value (indep) 0.45 049 082 Q.11 0.78
p-value (ER=5%} 0.18 0.14 014 011 0.00#
S&P 500 ER 5.55 525 515 496 4.46
p-value {indep) 0.62 088 032 089 089
p-value (ER=5%) 0.44 073 085 09 0.43
Dow Jones ER 5.65 565 565 565 496
p-value {indep) 0.56 056 018 056 0.68
p-value (ER=5%)  0.35 035 035 035 (.43
Note: * means statistically significant at the 1% level.
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5. Conclusions

We have proposed semiparametric methods for estimating
volatility, as well as nonparametric and parametric methods for
estimating the quantiles of scaled residuals. The performance
comparisons were studied both empirically and theoretically. We
have shown that the proposed semiparametric model is flexible in
approximating stock price dynamics.

For volatility estimation, it is evident from our study that the
decay parameter should be chosen from data. Qur proposed
method of choosing the decay parameter has been demonstrated
to be quite effective. An adaptive procedure has also been
proposed, which allows the automatic adaptation of periodic
changes in market conditions. The AVE has been shown to out-
perform the other procedures, while the SVE also performs com-
petitively.

For the quantile estimation, our study shows that the non-
parametric method has a very high efficiency compared with its
parametric counterparts. Furthermore, it is robust against mis-
specifications of models. An adaptive procedure was introduced
to accommodate the changes in market conditions over time,
which allows it to outperform other competing approaches.

For the VaR estimation, it is natural to combine the AVE with
the adaptive quantile estimator (i.e. ARE), and to combine the
semiparametric estimator of volatility with the nonparametric es-
timator of quantiles (i.e. SRE), to yield effective estimators for
VaR. The former is designed to accommodate changes in market
conditions over time while the latter is introduced for situations
where the market conditions do not change abruptly. Both
methods perform outstandingly, although preference is given to
the ARE method. This is due partially to the changes in market
conditions over time.

Some parameters in the adaptive volatility and adaptive non-
paramelric quantile estimators were chosen arbitrarily. The per-
formance of our proposed procedure can be further ameliorated if
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these parameters are optimized. An advantage of our procedure is
that it can be combined with other volatility estimators and quan-
tile estimators to yield new and more powerful procedures for
estimating VaR.
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Appendix

In this appendix, we give some theoretical derivations on the
relative efficiencies of several nonparametric and parametric
estimators of quantiles. The basic assumption is that
{ﬁfﬁ,t:To,u-, Tw’t} is an independent random sample from a
population with a probability density f.

A.1 Relative Efficiency of Estimator (3.1)

By the symumetry assumption, f{g(c,7)) = f(g(1 - o,1)). By using
(3.8), we obtain that the estimators §(c,t) and §(1 — o,7) arejointly
asymptotically normal with a mean of (4(o7), ~q(e,m)" and a
covariance matrix of

af ofi-o) o
flglov) [ o2 u(1~a))-

It follows that §P%o,1) has an asymptotically normal distribution
with a mean of ¢(0,7) and a variance of

£ (g(ont) ol — o) - 202 + ol ~ o] = 27 f(g(o, 1) el ~ 200)

and that §(c,7) is asymptotically normal with a mean of g(art) and
a variance of

Flglo ) ol ~ o).

Congequently, the estimator ﬁ[BE(OL,'c) isafactorof 2(1— o) /(1 ~200)
that is as efficient as §{c,T).
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A.2 Asymptotic Normality for the
Method of Moments Estimator

Recall that the variance of the squared frandom variable with
degree of freedom v is given by 2V - 1)/(v = 2%V - 4). By the
central Hmit theorem,

n v .2 L V-1 .4
-4 2| -Zs Nf g, A
ﬁ[“‘z v-2 } g ( (v -2 - 4) ]

Using the delta-method,we deduce that

PN L viv-1) .2
*f’;‘m(\[‘;’ szl] ""> N(O'z(v—z)(vﬁz;)}‘ J

Hence, the estimated quantile
A Vo
Mot =V V2 o)

has an asymptotically normal distribution with a mean of Af{c,7)
and a variance of

Ay — 1)t§a;:f‘
2v-4)





